131 Matching Results

Search Results

Advanced search parameters have been applied.

Impact of nonequilibrium particle temperature considerations on seeded coal combustion plasma properties. Third and fourth quarterly reports, April 1, 1991--September 30, 1991

Description: The main purpose of this research is to investigate the impact of nonequilibrium temperatures of the post-combustion entrained particles on the generator-bound combustion plasma properties and consequently on the overall performance of the MHD channels for both Linear and Disk configurations in the typical coal-fired MHD environment. Aiming at this purpose are three major tasks. The first task is to establish a simulation model to present the steady state, non-equilibrium interactions between the post-combustion entrained particles and their carrier gases. The second task is to predict the overall performance of the MHD channels for both Linear and Disk configurations with the available fully-developed non-equilibrium simulation model. The third task is to evaluate the relative impact of gas-particle temperature difference on generator slag phenomena as well as MHD overall performance. This past quarter, the linear MHD channel simulation model has been completely specified and partially modified to incorporate considerations for nonequilibrium particle temperatures. Testing of the modified model with the initial values from the first submodel (Richter`s combustion zone model) and evaluation of the non-equilibrium particle temperature effect on the overall MHD performance is currently ongoing.
Date: December 31, 1991
Creator: Oni, A.A.
Partner: UNT Libraries Government Documents Department

Potassium emission absorption system. Topical report 12

Description: The Potassium Emission Absorption System is one of the advanced optical diagnostics developed at Mississippi State University to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the upstream of an MHD flow, the system directly measures gas temperature and neutral potassium atom number density through spectroscopic emission absorption techniques. From these measurements the electron density can be inferred from a statistical equilibrium calculation and the electron conductivity in the MHD channel found by use of an electron mobility model. The instrument has been utilized for field test measurements on MHD facilities for almost a decade and has been proven to provide useful measurements as designed for MHD nozzle, channel, and diffuser test sections. The theory of the measurements, a system description, its capabilities, and field test measurement results are reported here. During the development and application of the instrument several technical issues arose which when addressed advanced the state of the art in emission absorption measurement. Studies of these issues are also reported here and include: two-wavelength measurements for particle-laden flows, potassium D-line far wing absorption coefficient, bias in emission absorption measurements arising from dirty windows and misalignments, non-coincident multiwavelength emission absorption sampling errors, and lineshape fitting for boundary layer flow profile information. Although developed for NLHD application, the instrument could be applied to any high temperature flow with a resonance line in the 300 to 800 nm range, for instance other types of flames, rocket plumes or low temperature plasmas.
Date: April 1, 1995
Creator: Bauman, L.E.
Partner: UNT Libraries Government Documents Department

Conceptual design of a coal-fired MHD retrofit. Final technical report

Description: Coal-fired magnetohydrodynamics (MHD) technology is ready for its next level of development - an integrated demonstration at a commercial scale. The development and testing of MHD has shown its potential to be the most efficient, least costly, and cleanest way to burn coal. Test results have verified a greater than 99% removal of sulphur with a potential for greater than 60% efficiency. This development and testing, primarily funded by the U.S. Department of Energy (DOE), has progressed through the completion of its proof-of-concept (POC) phase at the 50 MWt Component Development and Integration Facility (CDIF) and 28 MWt Coal Fired Flow Facility (CFFF), thereby, providing the basis for demonstration and further commercial development and application of the technology. The conceptual design of a retrofit coal-fired MHD generating plant was originally completed by the MHD Development Corporation (MDC) under this Contract, DE-AC22-87PC79669. Thereafter, this concept was updated and changed to a stand-alone MHD demonstration facility and submitted by MDC to DOE in response to the fifth round of solicitations for Clean Coal Technology. Although not selected, that activity represents the major interest in commercialization by the developing industry and the type of demonstration that would be eventually necessary. This report updates the original executive summary of the conceptual design by incorporating the results of the POC program as well as MDC`s proposed Billings MHD Demonstration Project (BMDP) and outlines the steps necessary for commercialization.
Date: June 1, 1994
Partner: UNT Libraries Government Documents Department

MHD advanced power train. Phase 1, Final report: Volume 2, Development program plan

Description: Two scale-up steps are required before the 200 MW(e) power plant could be designed and constructed. The development program plan is designed to meet these 3 needed program elements: (a) design and demonstration test of a 50 MW(t) power train that verifies channel life; (b) design, development, and demonstration of an advanced power train in a 250 MW(t) plant facility; and (c) development of technology for advanced MHD generators that are economic of magnet warm bore, reliable for at least 4000 hours operation, and are amenable to automated production to meet the low cost goal. An implicit program element, Base Technology, provides support to these 3 elements. The overall program will require 11 years and is estimated to cost $278 million in 1984 dollars.
Date: August 1, 1985
Creator: Jones, A.R.
Partner: UNT Libraries Government Documents Department

MHD advanced power train. Phase 1, Final report: Volume 1, Executive summary

Description: The Phase I objective of defining a plan for the development program that will provide qualification of the engineering data base for MHD power trains for MHD/steam plants with 200 MW(e) capacity, has been achieved. A program has been defined for engineering development of components, scale-up of power train components to reach 200 MW(e), integration of components into proof-of-concept power train systems at two logical ratings, and integration of power train system into the total plant at the larger rating. There is no requirement for scientific breakthrough. The plan will produce technical success in the shortest schedule and at lowest cost; it identifies the required management and engineering tools and expertise.
Date: August 1, 1985
Creator: Jones, A.R.
Partner: UNT Libraries Government Documents Department

MHD advanced power train. Phase 1, Final report: Volume 3, Power train system description and specification for 200MWe Plant

Description: This System Design Description and Specification provides the basis for the design of the magnetohydrodynamic (MHD) Power Train (PT) for a nominal 200 MWe early commercial tiHD/Steam Power Plant. This document has been developed under Task 2, Conceptual Design, of Contract DE-AC22-83PC60575 and is to be used by the project as the controlling and coordinating documentation during future design efforts. Modification and revision of this specification will occur as the design matures, and tiie-Westinghouse MHD Project Manager will be the focal point for maintaining this document and issuing periodic revisions. This document is intended to delineate the power train and-power train components requirements and assumptions that properly reflect the MHD/Steam Power Plant in the PT design. The parameters discussed in this document have been established through system calculations as well as through constraints set by technology and by limitations on materials, cost, physical processes associated with MHD, and the expected operating data for the plant. The specifications listed in this document have precedence over all referenced documents. Where this specification appears to conflict with the requirements of a reference document, such conflicts should be brought to the attention of the Westinghouse MHD Project Manager for resolution.
Date: August 1, 1985
Creator: Jones, A.R.
Partner: UNT Libraries Government Documents Department

Dispersion of seed vapor and gas ionization in an MHD second stage combustor and channel

Description: An approach is introduced for the simulation of a magnetohydrodynamic system consisting of a second stage combustor, a convergent nozzle, and a channel. The simulation uses an Argonne integral combustion flow computer code and another Argonne channel computer code to predict flow, thermal and electric properties in the seed particle laden reacting flow in the system. The combustion code is a general hydrodynamics computer code for two-phase, two-dimensional, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for gaseous and condensed phases. The channel code is a multigrid three-dimensional computer code for compressible flow subject to magnetic and electric interactions. Results of this study suggests that (1) the processes of seed particle evaporation, seed vapor dispersion, and gas ionization in the reacting flow are critical to the evaluation of the downstream channel performance and (2) particle size, loading, and inlet profile have strong effects on wall deposition and plasma temperature development.
Date: July 1, 1992
Creator: Chang, S. L.; Lottes, S. A. & Bouillard, J. X.
Partner: UNT Libraries Government Documents Department

The low moisture eastern coal processing system at the UTSI-DOE Coal Fired Flow Facility

Description: A low moisture, eastern coal processing system was constructed at the Department of Energy`s Coal Fired Flow Facility (CFFF), located at the University of Tennessee Space Institute in Tullahoma, Tennessee, to provide a metered and regulated supply of seeded, pulverized coal to support magnetohydrodynamic (MHD) power generation research. The original system configuration is described as well as major modifications made in response to specific operational problems. Notable among these was the in-house development of the Moulder flow control valve which exhibited marked improvement in durability compared to previous valves used with pulverized coal. Coal processing system performance parameters are discussed. A summary of tests conducted and significant events are included.
Date: October 1, 1993
Creator: Evans, B. R.; Washington, E. S. & Sanders, M. E.
Partner: UNT Libraries Government Documents Department

MHD Technology Transfer, Integration and Review Committee. Seventh semi-annual status report, April 1991--September 1991

Description: This seventh semi-annual status report of the MHD Technology Transfer, Integration and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1991 through September 1991. It includes a summary and minutes of the General Committee meeting, progress summaries of ongoing POC contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months. The meeting included test plan with Western coal, seed regeneration economics, power management for the integrated topping cycle and status of the Clean Coal Technology Proposal activities. Appendices cover CDIF operations HRSR development, CFFF operations etc.
Date: February 1, 1993
Partner: UNT Libraries Government Documents Department

Technical progress report for the Magnetohydrodynamics Coal-Fired Flow Facility, January 1, 1994--March 31, 1994

Description: In this quarterly technical progress report, UTSI reports on the status of a multi-task contract to develop the technology for the steam bottoming portion of a MHD Steam Combined Cycle Power Plant. The report describes the facility maintenance and environmental work completed, status of completing technical reports and certain key administrative actions occurring during the quarter. In view of current year budget reductions and program reductions to closeout the MHD program, downsizing of the UTSI work force took place. No further testing has occurred or is scheduled, and the planned effort for this period was to maintain the DOE CFFF facility in a standby status and to complete test reports.
Date: June 1, 1994
Partner: UNT Libraries Government Documents Department

MHD Integrated Topping Cycle Project. Sixteenth quarterly technical progress report, May 1991--July 1991

Description: The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990`s, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.
Date: March 1, 1992
Partner: UNT Libraries Government Documents Department

MHD Integrated Topping Cycle Project. Fourteenth quarterly technical progress report, November 1, 1990-- January 31, 1991

Description: This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.
Date: February 1, 1992
Partner: UNT Libraries Government Documents Department

Impact of nonequilibrium particle temperature considerations on seeded coal combustion plasma properties. Fifth quarterly report, October 1, 1991--December 30, 1991

Description: This past quarter ending 12/30/91, the linear MHD channel simulation model has not only been completely specified but also fully modified to incorporate considerations for nonequilibrium particle temperatures. Testing of the modified model with the initial values from the first submodel (Richter`s combustion zone model) and evaluation of the non-equilibrium particle temperature effect on the overall MHD performance is being held up. Reasons for the holdup is the lack of adequate response from Dr. Richter on questions about his nonequilibrium particle temperature model. These questions relate to our insistence to know precisely how the model works and also some review of the source code to ascertain that it is synchronization with our overall analytical development. We have decided to generate initial generator inlet particle parameter values by modifying the CEC code to provide particle parameter values.
Date: December 31, 1991
Creator: Oni, A. A.
Partner: UNT Libraries Government Documents Department

Impact of nonequilibrium particle temperature considerations on seeded coal combustion plasma properties. Sixth quarterly report, January 1, 1992--March 31, 1992

Description: The first of the three tasks of this research activity is to develop a model that represents steady, nonequilibrium energy interactions between post-combustion entrained particles and carrier gases, under typical coal-fired MHD operating conditions. The second task is to use the developed model to evaluate, for both the MHD linear channel and disk configurations. the impact of nonequilibrium particle temperatures on predicted gasdynamic and electrical property values that depend, at times critically, on plasma temperatures, and on which the overall MHD system performance depends. The third task is to evaluate the relative impact of gas-particle temperature differences on generator slag phenomena and consequently on MHD channel performance.
Date: July 1, 1992
Creator: Oni, A. A.
Partner: UNT Libraries Government Documents Department

MHD Coal-Fired Flow Facility. Quarterly/annual technical progress report, October-December 1979

Description: In this Fourth Quarterly/Annual Report submitted under DOE contracts EX-76-C-01-1760 and DE-AC02-79ET10815, the University of Tennessee Space Institute (UTSI) reports on significant activity, task status, planned research, testing, and development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Research and Development Laboratory. Work on the CFFF progressed with only minor problems. Total construction activity for all site work presently awarded is nearly 98% complete. Water analysis shows that Woods Reservoir baseline conditions are within EPA or Tennessee drinking water standards. For the primary combustor, the vitiation heater and primary combustor fabrication drawings were completed and the nozzle design was completed. The drum module for the radiant slagging furnace was awarded. On the MHD Power Generator, development continued in several areas of advanced analysis including development of time-dependent models for use with the one-dimensional code. For seed regeneration, the tentative determination is that the Tomlinson Tampella is the most economically viable method. With regard to capped electrode erosion, investigations have shown that the major degradation of the cladding still present is at the leading edge of the capped anode. To alleviate this, plans are to hot work the noble metal in the bending operation. In resolving another problem, a system employing the modified line-reversal method has been assembled and successfully tested to measure absolute plasma temperatures.
Date: February 1, 1980
Creator: Dicks, J. B.; Chapman, J. N. & Crawford, L. W.
Partner: UNT Libraries Government Documents Department

MHD Integrated Topping Cycle Project

Description: This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.
Date: February 1, 1992
Partner: UNT Libraries Government Documents Department

MHD Integrated Topping Cycle Project

Description: The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.
Date: March 1, 1992
Partner: UNT Libraries Government Documents Department

Impact of nonequilibrium particle temperature considerations on seeded coal combustion plasma properties

Description: This past quarter ending 12/30/91, the linear MHD channel simulation model has not only been completely specified but also fully modified to incorporate considerations for nonequilibrium particle temperatures. Testing of the modified model with the initial values from the first submodel (Richter's combustion zone model) and evaluation of the non-equilibrium particle temperature effect on the overall MHD performance is being held up. Reasons for the holdup is the lack of adequate response from Dr. Richter on questions about his nonequilibrium particle temperature model. These questions relate to our insistence to know precisely how the model works and also some review of the source code to ascertain that it is synchronization with our overall analytical development. We have decided to generate initial generator inlet particle parameter values by modifying the CEC code to provide particle parameter values.
Date: January 1, 1991
Creator: Oni, A.A.
Partner: UNT Libraries Government Documents Department

Impact of nonequilibrium particle temperature considerations on seeded coal combustion plasma properties

Description: The first of the three tasks of this research activity is to develop a model that represents steady, nonequilibrium energy interactions between post-combustion entrained particles and carrier gases, under typical coal-fired MHD operating conditions. The second task is to use the developed model to evaluate, for both the MHD linear channel and disk configurations. the impact of nonequilibrium particle temperatures on predicted gasdynamic and electrical property values that depend, at times critically, on plasma temperatures, and on which the overall MHD system performance depends. The third task is to evaluate the relative impact of gas-particle temperature differences on generator slag phenomena and consequently on MHD channel performance.
Date: January 1, 1992
Creator: Oni, A.A.
Partner: UNT Libraries Government Documents Department