290 Matching Results

Search Results

Advanced search parameters have been applied.

Geographic Variation in Chromosomes and Morphology of Peromyscus Maniculatus in Texas and Oklahoma

Description: This study was initiated after finding two chromosomal types of Peromyscus maniculatus north and south of the Red River in Texas and Oklahoma. The problem was to explain the chromosomal variations and their implications to the systematics of the grassland subspecies of P. maniculatus in this region.
Date: August 1972
Creator: Caire, William, 1946-
Partner: UNT Libraries

A comparison of straight-stained, Q-stained, and reverse flourescent-stained cell lines for detection of fragile sites on the human X chromosome

Description: Cell cultures were examined for percentage of fragile sites seen in straight-stained, Q-stained and reverse fluorescent-stained preparations. In all cases, percentage of fragile site expression was decreased when compared to straight-stained preparations. However, fragile sites seen in Q- and RF-stain could be identified as on X chromosomes.
Date: May 1985
Creator: Coultas, Susan L. (Susan Lynette)
Partner: UNT Libraries

A common allele on chromosome 9 associated with coronary heartdisease

Description: Coronary heart disease (CHD) is a major cause of death in Western countries. Here we used genome-wide association scanning to identify a 58 kb interval on chromosome 9 that was consistently associated with CHD in six independent samples. The interval contains no annotated genes and is not associated with established CHD risk factors such as plasma lipoproteins, hypertension or diabetes. Homozygotes for the risk allele comprise 20-25% of Caucasians and have a {approx}30-40% increased risk of CHD. These data indicate that the susceptibility allele acts through a novel mechanism to increase CHD risk in a large fraction of the population.
Date: March 1, 2007
Creator: McPherson, Ruth; Pertsemlidis, Alexander; Kavaslar, Nihan; Stewart, Alexandre; Roberts, Robert; Cox, David R. et al.
Partner: UNT Libraries Government Documents Department

CHROMOSOMAL ABERRATIONS IN A NATURAL POPULATION OF CHIRONOMUS TENTANS EXPOSED TO CHRONIC LOW-LEVEL ENVIRONMENTAL RADIATION

Description: The salivary gland chromosomes of Chironomus tentans larvae collected from White Oak Creek, an area contaminated by radioactive waste from the Oak Ridge National Laboratory, and from six uncontaminated areas were examined for chromosomal aberrations. White Oak Creek populations were exposed to absorbed doses as high as 230 rads per year or about 1000 times background. Chromosomal maps were constructed to make a general comparison of the banding pattern of the salivary chromosomes of the C. tentans in the East Tennessee area with those of Canada and Europe. These maps were used as a reference in scoring aberrations. Fifteen different chromosomal aberrations were found in 365 larvae taken from the irradiated population as compared with five different aberrations observed in 356 larvae from six control populations, but the mean number of aberrations per larva did not differ in any of the populations. The quantitative amount of heterozygosity was essentially the same in the irradiated and the control population, but there were three times the variety of chromosomal aberrations found in the irradiated area. From this evidence it was concluded that chronic low-level irradiation from radioactive waste was increasing the variability of chromosomal aberrations without significantly increasing the frequency. It was also concluded that chromosomal polymorphism can be maintained in a natural population without superiority of the heterozygous individuals. (C.H.)
Date: January 29, 1964
Creator: Blaylock, B G; Auerbach, S I & Nelson, D J
Partner: UNT Libraries Government Documents Department

The Genome of the Western Clawed Frog Xenopus tropicalis

Description: The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes over 20,000 protein-coding genes, including orthologs of at least 1,700 human disease genes. Over a million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like other tetrapods, the genome contains gene deserts enriched for conserved non-coding elements. The genome exhibits remarkable shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage.
Date: October 1, 2009
Creator: Hellsten, Uffe; Harland, Richard M.; Gilchrist, Michael J.; Hendrix, David; Jurka, Jerzy; Kapitonov, Vladimir et al.
Partner: UNT Libraries Government Documents Department

Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

Description: Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.
Date: November 3, 2008
Creator: Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui et al.
Partner: UNT Libraries Government Documents Department

Large Gap Size Paired-end Library Construction for Second Generation Sequencing

Description: Fosmid or BAC end sequencing plays an important role in de novo assembly of large genomes like fungi and plants. However construction and Sanger sequencing of fosmid or BAC libraries are laborious and costly. The current 454 Paired-End (PE) Library and Illumina Jumping Library construction protocols are limited with the gap sizes of approximately 20 kb and 8 kb, respectively. In the attempt to understand the limitations of constructing PE libraries with greater than 30Kb gaps, we have purified 18, 28, 45, and 65Kb sheared DNA fragments from yeast and circularized the ends using the Cre-loxP approach described in the 454 PE Library protocol. With the increasing fragment sizes, we found a general trend of decreasing library quality in several areas. First, redundant reads and reads containing multiple loxP linkers increase when the average fragment size increases. Second, the contamination of short distance pairs (<10Kb) increases as the fragment size increases. Third, chimeric rate increases with the increasing fragment sizes. We have modified several steps to improve the quality of the long span PE libraries. The modification includes (1) the use of special PFGE program to reduce small fragment contamination; (2) the increase of DNA samples in the circularization step and prior to the PCR to reduce redundant reads; and (3) the decrease of fragment size in the double SPRI size selection to get a higher frequency of LoxP linker containing reads. With these modifications we have generated large gap size PE libraries with a much better quality.
Date: May 28, 2010
Creator: Peng, Ze; Hamilton, Matthew; Froula, Jeff; Ewing, Aren; Foster, Brian & Cheng, Jan-Fang
Partner: UNT Libraries Government Documents Department

A Family of Zinc Finger Proteins Is Required forChromosome-specific Pairing and Synapsis during Meiosis in C.elegans

Description: Homologous chromosome pairing and synapsis are prerequisitefor accurate chromosome segregation during meiosis. Here, we show that afamily of four related C2H2 zinc-finger proteins plays a central role inthese events in C. elegans. These proteins are encoded within a tandemgene cluster. In addition to the X-specific HIM-8 protein, threeadditional paralogs collectively mediate the behavior of the fiveautosomes. Each chromosome relies on a specific member of the family topair and synapse with its homolog. These "ZIM" proteins concentrate atspecial regions called meiotic pairing centers on the correspondingchromosomes. These sites are dispersed along the nuclear envelope duringearly meiotic prophase, suggesting a role analogous to thetelomere-mediated meiotic bouquet in other organisms. To gain insightinto the evolution of these components, wecharacterized homologs in C.briggsae and C. remanei, which revealed changes in copy number of thisgene family within the nematode lineage.
Date: June 7, 2006
Creator: Phillips, Carolyn M. & Dernburg, Abby F.
Partner: UNT Libraries Government Documents Department

Markov Model of Segmentation and Clustering: Applications in Deciphering Genomes and Metagenomes

Description: Rapidly accumulating genomic data as a result of high-throughput sequencing has necessitated development of efficient computational methods to decode the biological information underlying these data. DNA composition varies across structurally or functionally different regions of a genome as well as those of distinct evolutionary origins. We adapted an integrative framework that combines a top-down, recursive segmentation algorithm with a bottom-up, agglomerative clustering algorithm to decipher compositionally distinct regions in genomes. The recursive segmentation procedure entails fragmenting a genome into compositionally distinct segments within a statistical hypothesis testing framework. This is followed by an agglomerative clustering procedure to group compositionally similar segments within the same framework. One of our main objectives was to decipher distinctive evolutionary patterns in sex chromosomes via unraveling the underlying compositional heterogeneity. Application of this approach to the human X-chromosome provided novel insights into the stratification of the X chromosome as a consequence of punctuated recombination suppressions between the X and Y from the distal long arm to the distal short arm. Novel "evolutionary strata" were identified particularly in the X conserved region (XCR) that is not amenable to the X-Y comparative analysis due to massive loss of the Y gametologs following recombination cessation. Our compositional based approach could circumvent the limitations of the current methods that depend on X-Y (or Z-W for ZW sex determination system) comparisons by deciphering the stratification even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available. These studies were extended to the plant sex chromosomes which are known to have a number of evolutionary strata that formed at the initial stage of their evolution, presenting an opportunity to examine the onset of stratum formation on the sex chromosomes. Further applications included detection of horizontally acquired DNAs in extremophilic eukaryote, Galdieria sulphuraria, which ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2017
Creator: Pandey, Ravi Shanker
Partner: UNT Libraries

Chromosome-specific DNA Repeat Probes

Description: In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with {alpha}-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.
Date: March 16, 2006
Creator: Baumgartner, Adolf; Weier, Jingly Fung & Weier, Heinz-Ulrich G.
Partner: UNT Libraries Government Documents Department

Telomerase activity in human cancer

Description: The overall goal of this collaborative project was to investigate the role in malignant cells of both chromosome telomeres, and telomerase, the enzyme that replicates telomeres. Telomeres are highly conserved nucleoprotein complexes located at the ends of eucaryotic chromosomes. Telomere length in somatic cells is reduced by 40--50 nucleotide pairs with every cell division due to incomplete replication of terminal DNA sequences and the absence of telomerase, the ribonucleoprotein that adds telomere DNA to chromosome ends. Although telomerase is active in cells with extended proliferative capacities, including more than 85% of tumors, work performed under this contract demonstrated that the telomeres of human cancer cells are shorter than those of paired normal cells, and that the length of the telomeres is characteristic of particular types of cancers. The extent of telomere shortening ostensibly is related to the number of cell divisions the tumor has undergone. It is believed that ongoing cell proliferation leads to the accumulation and fixation of new mutations in tumor cell lineages.Therefore, it is not unreasonable to assume that the degree of phenotypic variability is related to the proliferative history of the tumor, and therefore to telomere length, implying a correlation with prognosis. In some human tumors, short telomeres are also correlated with genomic instabilities, including interstitial chromosome translocation, loss of heterozygosity, and aneuoploidy. Moreover, unprotected chromosome ends are highly recombinogenic and telomere shortening in cultured human cells correlates with the formation of dicentric chromosomes, suggesting that critically short telomeres not only identify, but also predispose, cells to genomic instability, again implying a correlation with prognosis. Therefore, telomere length or content could be an important predictor of metastatic potential or responsiveness to various therapeutic modalities.
Date: October 2000
Creator: Griffith, J.
Partner: UNT Libraries Government Documents Department

SNPs in putative regulatory regions identified by human mouse comparative sequencing and transcription factor binding site data

Description: Genome wide disease association analysis using SNPs is being explored as a method for dissecting complex genetic traits and a vast number of SNPs have been generated for this purpose. As there are cost and throughput limitations of genotyping large numbers of SNPs and statistical issues regarding the large number of dependent tests on the same data set, to make association analysis practical it has been proposed that SNPs should be prioritized based on likely functional importance. The most easily identifiable functional SNPs are coding SNPs (cSNPs) and accordingly cSNPs have been screened in a number of studies. SNPs in gene regulatory sequences embedded in noncoding DNA are another class of SNPs suggested for prioritization due to their predicted quantitative impact on gene expression. The main challenge in evaluating these SNPs, in contrast to cSNPs is a lack of robust algorithms and databases for recognizing regulatory sequences in noncoding DNA. Approaches that have been previously used to delineate noncoding sequences with gene regulatory activity include cross-species sequence comparisons and the search for sequences recognized by transcription factors. We combined these two methods to sift through mouse human genomic sequences to identify putative gene regulatory elements and subsequently localized SNPs within these sequences in a 1 Megabase (Mb) region of human chromosome 5q31, orthologous to mouse chromosome 11 containing the Interleukin cluster.
Date: January 1, 2002
Creator: Banerjee, Poulabi; Bahlo, Melanie; Schwartz, Jody R.; Loots, Gabriela G.; Houston, Kathryn A.; Dubchak, Inna et al.
Partner: UNT Libraries Government Documents Department

Development of affinity technology for isolating individual human chromosomes by third strand binding

Description: The overall goal was to explore whether nucleic acid third strands could be used to bind with very high specificity to specific targets within whole genomes. Towards this end conditions had to be found to keep erroneous binding to an absolute minimum. The goal to use third strands (linked to magnetic beads) to ''capture'' large particles such as plasmids, cosmids, and whole chromosomes from complex mixtures was partially met; their use to serve as cytogenetic probes of metaphase chromosomes and to deliver reactive reagents to unique target sites on chromosomes in vivo for the purpose of mutagenizing specific base pairs was fully met; and their use as cytogenetic probes of chromosomal DNA in sections of formalin-fixed, paraffin-embedded tissue has been met since the DOE support was terminated.
Date: June 1, 2003
Creator: Fresco, Jacques R.
Partner: UNT Libraries Government Documents Department

The complete sequence of human chromosome 5

Description: Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA).
Date: April 15, 2004
Creator: Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, State et al.
Partner: UNT Libraries Government Documents Department