1,118 Matching Results

Search Results

Advanced search parameters have been applied.

Pathway and kinetic analysis on the iso-propyl radical + O{sub 2} reaction system

Description: We analyze the isopropyl + 02 reaction system using thermochemical Transition State Theory (TST), molecular thermodynamic properties, analysis (quantum RRK) for k(E) and modified strong collision analyze Cyclic transition states for both hydrogen transfer and concerted propylene from isopropylperoxy are calculated using semi-empirical theory in addition to transition states for H02 elimination from hydroperoxy-isopropyl. Computed rate constants are compared to constant measurements of for isopropyl + H02.
Date: April 7, 1997
Creator: Bozzelli, J. W. & Pitz, W. J.
Partner: UNT Libraries Government Documents Department

A Survey of the Rates and Products of Short-Term Photosynthesis inPlants of 9 Phyla

Description: The conclusions of this paper are: (1) Short-term photosynthetic experiments using C{sup 14}O{sub 2} and paper chromatography were performed with 27 different plants representing nine phyla: Schizophyta (Schizophyceae), Euglenophyta, Chlorophyta, Charophyta, Chrysophyta, Rhodophyta, Bryophyta, Pteridophyta, and Spermatophyta. (2) There is a remarkable uniformity in the types of ethanol-soluble compounds which became radioactive in the entire group of plants used. The amounts of the different compounds varied considerably percentage-wise among the various plants as would be expected because of their inherent metabolic differences and the variations in their physiological states induced by experimental conditions. (3) Sucrose became radioactive in very different amounts in two major groupings of plants: (a) those containing only photosynthetic tissue and (b) those containing non-photosynthetic tissue as well. The amount of radioactive sucrose in the former group was much lower than that in the latter. (4) An unidentified compound became radioactive in appreciable amounts in two of the blue-green algae, but was radioactive in very small amounts or not visible at all on the chromatograms of all other plants.
Date: May 1, 1954
Creator: Calvin, M.; Norris, R.E. & Norris, Louisa
Partner: UNT Libraries Government Documents Department

Free-radical kinetics of coal liquefaction

Description: A rate expression with first- and second-order terms in the concentration of extractable compounds in solid coal particles is derived from a fundamental free-radical mechanism. The expression was suggested empirically by prior experiments for coal liquefaction in the presence of a hydrogen-donor solvent. Radical reactions are considered to occur in both coal and in solvent. The long-chain approximation justifies the neglect of initiation, hydrogen abstraction, and termination rates as quantitatively insignificant relative to propagation reaction rates.
Date: July 16, 1994
Creator: Wang, M.; Smith, J.M. & McCoy, B.J.
Partner: UNT Libraries Government Documents Department

Beyond transition state theory: Rigorous quantum approaches for determining chemical reaction rates

Description: Transition state theory (TST) has historically been the most important and widely used theoretical approach for describing the rates of chemical reactions, and for qualitative pictures and order-of-magnitude estimates one does not expect this situation to change. However a rigorous, quantitative treatment of chemical reaction rates must go beyond TST. A rigorous description, for example, must be based on a quantum mechanical description of the molecular system, but the fundamental assumption on which TST is based - namely that the molecular dynamics is {open_quotes}direct,{close_quotes} i.e., that no trajectories re-cross a dividing surface which separates reactants and products (vide infra) - is couched inherently in the language of classical mechanics. There is no unambiguous way to quantize TST, for the various ways of trying to do so invariably require one to introduce additional assumptions about the reaction dynamics. As one tries to eliminate these {open_quotes}additional assumptions{close_quotes} one is driven ultimately to an exact quantum treatment of the reaction dynamics which is then no longer a transition state theory (i.e., approximation) but simply an exact formulation. It is such exact approaches, those without inherent approximations, that are the subject of this chapter.
Date: January 1, 1995
Creator: Miller, W.H.
Partner: UNT Libraries Government Documents Department

Quartz Channel Fabrication for Electrokinetically Driven Separations

Description: For well resolved electrokinetic separation, we L tilize crystalline quartz to micromachine a uniformly packe Q&iKLmnel. Packing features are posts 5 Vm on a side with:} pm spacing and etched 42 Vm deep. In addition to anisotropic wet etch characteristics for micromachining, quartz propmties are compatible with chemical soiutioits, ekctrokinetic high voltage operation, and stationary phase film depositions. To seal these channels, we employ a room temperature silicon-oxynhride deposition to forma membrane, that is subsequently coated for mechanical stability. Using this technique, particulate issues and global warp, that make large area wafer bon ding methods difficult, are avoided, and a room temperature process, in contrast to high temperature bonding techniques, accommodate preprocessing of metal films for electrical interconnect. After sealing channels, a number of macro-assembly steps are required to attach a micro-optical detection system and fluid interconnects. Keywords: microcharmel, integrated channel, micromachined channel, packed channel, electrokinetic channel, eleetrophoretic channel
Date: December 1, 1998
Creator: Arnold, D.W.; Ashby, C.I.H.; Bailey, C.G.; Kravitz, S.H., Warren, M.E. & Matzke, C.M.
Partner: UNT Libraries Government Documents Department

Pathway and kinetic analysis on the propyl radical + 02 reaction system

Description: In this study of the reaction of alkyl radicals with molecular oxygen, we analyze the propyl + 02 reaction system using thermochemical kinetics, Transition State Theory (TST), molecular thermodynamic properties, quantum Kassel analysis (quantum RRK) for k(E) and modified strong collision analysis for fall off. Cyclic transition states for both hydrogen transfer and the H02 concerted elimination from propylperoxy are calculated using semi-empirical (MOPAC PM3) calculations [8] in addition to transition states for H02 elimination and epoxide formation from hydroperoxy-isopropyl. Computed rate constants for propyl + 02 are compared to the values of Gulati and Walker who measured the rate constants at 50 torr and over a temperature range of 653 to 773 K. Computed rate constants are also used in a detailed chemical kinetic mechanism and compared to the n- propyl + 02 data of Slagle. They measured the rate of disappearance of n-propyl by reaction with 02 over a temperature range of 297 to 635 K and a pressure range of 0.4 to 7 Torr, as well as the fall off data of the Kaiser and Wallington.
Date: May 1, 1997
Creator: Bozzelli, J.W. & Pitz, W.J.
Partner: UNT Libraries Government Documents Department

Diesel combustion: an integrated view combining laser diagnostics, chemical kinetics, and empirical validation

Description: This paper proposes a structure for the diesel combustion process based on a combination of previously published and new results. Processes are analyzed with proven chemical kinetic models and validated with data from production-like direct injection diesel engines. The analysis provides new insight into the ignition and particulate formation processes, which combined with laser diagnostics, delineates the two-stage nature of combustion in diesel engines. Data are presented to quantify events occurring during the ignition and initial combustion processes that form soot precursors. A framework is also proposed for understanding the heat release and emission formation processes.
Date: February 1, 1999
Creator: Akinyami, O C; Dec, J E; Durrett, R P; Flynn, P F; Hunter, G L; Loye, A O et al.
Partner: UNT Libraries Government Documents Department

Chemical Kinetics for Modeling Silicon Epitaxy from Chlorosilanes

Description: A reaction mechanism has been developed that describes the gas-phas 0971 and surface reactions involved in the chemical vapor deposition of Si from chlorosilanes. Good agreement with deposition rate data from a single wafer reactor with no wafer rotation has been attained over a range of gas mixtures, total flow rates, and reactor temperatures.
Date: November 24, 1998
Creator: Balakrishna, A.; Chacin, J.M.; Comita, P.B.; Haas, B.; Ho, P. & Thilderkvist, A.
Partner: UNT Libraries Government Documents Department

Recent advances in the measurement of high temperature bimolecular rate constants

Description: Recent advances in the measurement of high temperature reaction rate constants are discussed. The studies carried out by shock tube methods are particularly considered because these results are important not only in theoretical chemical kinetics but also in practical applications. The work on 5 chemical reactions are reviewed in detail. These are: D + H{sub 2}, Cl + H{sub 2}, H + O{sub 2}, CH{sub 3} + CH{sub 3}, and H + NO{sub 2}.
Date: July 1, 1995
Creator: Michael, J.V.
Partner: UNT Libraries Government Documents Department

A PreliminaryReport on the Mechanism of the Decomposition ofDiacetyl Peroxide in Acetic Acid

Description: The decomposition of diacetyl peroxide in acetic acid-2-C{sup 14} has been studied, The activity of the products in general confirmed the mechanism of the reaction as proposed by Kharasch and Gladstone, The presence and distribution of activity in the methyl acetate produced in this reaction is not explained by the previously proposed mechanism. There was no appreciable exchange of acetic acid and diacetyl peroxide under the conditions of the reaction. Essentially no exchange of methyl acetate and acetic acid was observed when those reagents mere heated at 100 for five hours.
Date: December 29, 1949
Creator: Fry, A.J.; Tolbert, B.M. & Calvin, Melvin
Partner: UNT Libraries Government Documents Department

DI-TERTIABYBUTYLNITROXIDE, A HILL REAGENT

Description: Di-tertiarybutylnitroxide (DTBN), which they have tried to use as a trapping agent to identify the species giving rise to the photo-induced EPR signals in photosynthetic materials, functions as a Hill reagent with spinach chloroplasts. Evidence is presented which indicates that the reduction of DTBN is affected by photosystem II of the electron transport system of spinach chloroplasts. The reduced form of DTBN, the hydroxylamine, undergoes a photo-oxidation with spinach chloroplasts. Possible explanations of this apparent inconsistency are presented. A product which could be ascribed to a chemical coupling reaction between the nitroxide and the radical species giving rise to the photo-induced EPR signals in spinach chloroplasts was not detected, even using radioactive tracer methods.
Date: January 1, 1970
Creator: Corker, Gerald A.; Klein, Melvin P.; La Font, Didier & Calvin,Melvin.
Partner: UNT Libraries Government Documents Department

Early Unstable CO2-Fixation Products in Photosynthesis

Description: Some chemical, physical, and chromatographic properties of the hydroxylamine stabilized early products of CO{sub 2} fixation in photosynthesis are described. Although no definitive structural information is yet available, these properties, together with the biochemical context in which the material appears, make possible some likely suggestions about the nature of the substances.
Date: December 19, 1957
Creator: Metzner, Helmut; Metzner, Barbara & Calvin, Melvin
Partner: UNT Libraries Government Documents Department

Path of Carbon in Photosynthesis III

Description: Although the overall reaction of photosynthesis can be specified with some degree of certainty (CO{sub 2} + H{sub 2}O + light {yields} sugars + possibly other reduced substances), the intermediates through which the carbon passes during the course of this reduction have, until now, been largely a matter of conjecture. The availability of isotopic carbon, that is, a method of labeling the carbon dioxide, provides the possibility of some very direct experiments designed to recognize these intermediates and, perhaps, help to understand the complex sequence and interplay of reactions which must constitute the photochemical process itself. The general design of such experiments is an obvious one, namely the exposure of the green plant to radioactive carbon dioxide and light under a variety of conditions and for continually decreasing lengths of time, followed by the identification of the compounds into which the radioactive carbon is incorporated under each condition and time period. From such data it is clear that in principle, at least, it should be possible to establish the sequence of compounds in time through which the carbon passes on its path from carbon dioxide to the final products. In the course of shortening the photosynthetic times, one times, one ultimately arrives at the condition of exposing the plants to the radioactive carbon dioxide with a zero illumination time, that is, in the dark. Actually, in the work the systematic order of events was reversed, and they have begun by studying first the dark fixation and then the shorter photosynthetic times. The results of the beginnings of this sort of a systematic investigation are given in Table I which includes three sets of experiments, namely a dark fixation experiment and two photosynthetic experiments, one of 30 seconds duration and the other of 60 seconds duration.
Date: June 1, 1948
Creator: Benson, A.A. & Calvin, M.
Partner: UNT Libraries Government Documents Department

THE RELATION OF PHOTOSYNTHESIS TO RESPIRATION

Description: The gas exchange by barley leaves of oxygen, carbon dioxide, and added radiocarbon dioxide has been measured in a closed system, with the following results: 1. Carbon dioxide follows different but not necessarily independent paths in photosynthesis and light respiration. 2. The carbon of newly formed photosynthetic intermediates is not available for respiration while the light is on, but becomes immediately respirable in the dark, The enhancement of dark respiration after a light period is largely due to built-up ''photosynthates.'' 3. Photosynthesis proceeds at a measurable rate even at the lowest CO{sub 2} pressures observed (0.03 mm Hg). There is no evidence for a ''threshold'' concentration of carbon dioxide for the reaction; at the lowest concentrations reached, respiration exactly equals assimilation, 4. The mean rate of respiratory CO{sub 2} evolution in strong light was found to be less than that in the dark. Internal re-photosynthesis of respiratory carbon may have been sufficient to account for this effect. 5. The assimilation of C{sup 14}O{sub 2} is about 17% slower than that of C{sup 12}O{sub 2}.
Date: July 20, 1950
Creator: Weigl, J.W.; Warrington, P.M. & Calvin, M.
Partner: UNT Libraries Government Documents Department

THE PATH OF CARBON IN PHOTOSYNTHESIS. X. CARBON DIOXIDEASSIMILATION IN PLANTS

Description: The conclusions which have been drawn from the results of C{sup 14}O{sub 2} fixation experiments with a variety of plants are developed in this paper. The evidence for thermochemical reduction of carbon dioxide fixation intermediates is presented and the results are interpreted from such a viewpoint.
Date: April 1, 1950
Creator: Calvin, M.; Bassham, J .A.; Benson, A.A.; Lynch, V.; Ouellet, C.; Schou, L. et al.
Partner: UNT Libraries Government Documents Department

The Path of Carbon in Photosynthesis. XIV.

Description: It seems hardly necessary to repeat to an audience of this kind the importance of the process known as photosynthesis in the interaction and the interdependence of organisms and in the very existence of life as we know it. This process by which green plants are able to capture electromagnetic energy in the form of sunlight and transform it into stored chemical energy in the form of a wide variety of reduced (relative to carbon dioxide) carbon compounds provides the only major source of energy for the maintenance and propagation of all life.
Date: June 30, 1951
Creator: Calvin, Melvin; Bassham, J.A.; Benson, A.A.; Kawaguchi, S.; Lynch, V.H.; Stepka, W. et al.
Partner: UNT Libraries Government Documents Department