147 Matching Results

Search Results

Advanced search parameters have been applied.

Bonding Studies in Group IV Substituted n,n-dimethylanilines

Description: The purpose of the present work is to study the effects of the trimethylsilyl and trimethylgermyl substituents on the N,N-dimethylamino ring system. Both ground and excited state interactions were studied and their magnitudes determined. The experimental data were then used in conjunction with molecular orbital calculations to differentiate among, and determine the importance of, d-p bonding, hyperconjugation or polarization of the trimethylsilyl group on the ground and excited state bonding.
Date: December 1971
Creator: Drews, Michael James
Partner: UNT Libraries

Interplay of metal-allyl and metal-metal bonding in dimolybdenum allyl complexes

Description: Addition of PMe{sub 3} to Mo{sub 2}(allyl){sub 4} afforded Mo{sub 2}(allyl){sub 4}(PMe{sub 3}){sub 2}, in which two of the allyl groups adopt an unprecedented {mu}{sub 2{sup -}}{eta}{sup 1}, {eta}{sup 3} bonding mode; theoretical studies elucidate the role sof the {sigma}- and {pi}-donor ligands in the interplay of metal-allyl and metal-metal bonding.
Date: January 1, 2008
Creator: John, Kevin D; Martin, Richard L; Obrey, Steven J & Scott, Brian L
Partner: UNT Libraries Government Documents Department

The Electronic Structure of Heavy Element Complexes

Description: The area of study is the bonding in heavy element complexes, and the application of more sophisticated electronic structure theories. Progress is recounted in several areas: (a) technological advances and current methodologies - Relativistic effects are extremely important in gaining an understanding of the electronic structure of compounds of the actinides, transactinides, and other heavy elements. Therefore, a major part of the continual benchmarking was the proper inclusion of the appropriate relativistic effects for the properties under study. (b) specific applications - These include organoactinide sandwich complexes, CO activation by actinide atoms, and theoretical studies of molecules of the transactinide elements. Finally, specific directions in proposed research are described.
Date: July 25, 2000
Creator: Bursten, Bruce E.
Partner: UNT Libraries Government Documents Department

An Ion Exchange Study of Possible Hydridized 5f Bonding in theActinides

Description: A study has been made of the elution behavior of curium(III), americium(III), plutonium(III), actinium(III), plutonium(IV), neptunium(IV), uraniuM(IV), thorium(IV), neptunium(V), plutonium (VI), uranium (VI), lanthanum(III), cerium(III), europium(III), ytterbium(III), ytterium(III), strontium(II), barium(II), radium(II), cesium(I) with 3.2 M, 6.2 M, 9.3 M, and 12.2 M HCl solutions from Dowex-50 cation exchange resin columns. These elutions show that in high concentrations of hydrochloric acid the actinides form complex ions with chloride ion to a much greater extent than the lanthanides. The strengths of the tripositive actinide complex ions apparently go in the order plutonium > americium> curium, although their ionic radii also decrease in this same order. To explain these results, a partial covalent character may be ascribed to the bonding in the transuranium complex ions. It is shown that a reasonable structure for such covalent bonding involves hybridization of the 5f orbitals in the actinide elements.
Date: August 28, 1951
Creator: Diamond, R.M.; Street, Jr., K. & Seaborg, G.T.
Partner: UNT Libraries Government Documents Department

Detonation of Meta-stable Clusters

Description: We consider the energy accumulation in meta-stable clusters. This energy can be much larger than the typical chemical bond energy (~;;1 ev/atom). For example, polymeric nitrogen can accumulate 4 ev/atom in the N8 (fcc) structure, while helium can accumulate 9 ev/atom in the excited triplet state He2* . They release their energy by cluster fission: N8 -> 4N2 and He2* -> 2He. We study the locus of states in thermodynamic state space for the detonation of such meta-stable clusters. In particular, the equilibrium isentrope, starting at the Chapman-Jouguet state, and expanding down to 1 atmosphere was calculated with the Cheetah code. Large detonation pressures (3 and 16 Mbar), temperatures (12 and 34 kilo-K) and velocities (20 and 43 km/s) are a consequence of the large heats of detonation (6.6 and 50 kilo-cal/g) for nitrogen and helium clusters respectively. If such meta-stable clusters could be synthesized, they offer the potential for large increases in the energy density of materials.
Date: May 31, 2008
Creator: Kuhl, Allen; Kuhl, Allen L.; Fried, Laurence E.; Howard, W. Michael; Seizew, Michael R.; Bell, John B. et al.
Partner: UNT Libraries Government Documents Department

Transition Metal Catalyzed Oxidative Cleavage of C-O Bond

Description: The focus of this thesis is on C-O bonds activation by transition metal atoms. Lignin is a potential alternative energy resource, but currently is an underused biomass species because of its highly branched structure. To aid in better understanding this species, the oxidative cleavage of the Cβ-O bond in an archetypal arylglycerol β-aryl ether (β–O–4 Linkage) model compound of lignin with late 3d, 4d, and 5d metals was investigated. Methoxyethane was utilized as a model molecule to study the activation of the C-O bond. Binding enthalpies (ΔHb), enthalpy formations (ΔH) and activation enthalpies (ΔH‡) have been studied at 298K to learn the energetic properties in the C-O bond cleavage in methoxyethane. Density functional theory (DFT) has become a common choice for the transition metal containing systems. It is important to select suitable functionals for the target reactions, especially for systems with degeneracies that lead to static correlation effects. A set of 26 density functionals including eight GGA, six meta-GGA, six hybrid-GGA, and six hybrid-meta-GGA were applied in order to investigate the performance of different types of density functionals for transition metal catalyzed C-O bond cleavage. A CR-CCSD(T)/aug-cc-pVTZ was used to calibrate the performance of different density functionals.
Date: May 2015
Creator: Wang, Jiaqi
Partner: UNT Libraries

Computational Studies of Bonding and Phosphorescent Properties of Group 12 Oligomers and Extended Excimers.

Description: Density functional (ca, BLYP, BPW91, B3LYP and B3PW91), MP2 and CCSD(T) methods in combination with LANL2DZ or cc-pVxZ-PP (where x=D(double), T(triple) Q(quadruple), and 5(quintuple)) basis sets have been employed in computing electronic transition energies of zinc and cadmium monomers. CCSD(T)/aug-cc-pV5Z-PP combination finds values that are 150 cm-1 from the experimental value for the zinc monomer and 240 cm-1 remove from the cadmium monomer excitation experimental value. These method/basis set combinations are also used to find spectroscopic values (re, De, we, wexe, Be , and Te) that rival experimental values for dimers and excimers. Examples of this can be seen with the CCSD(T)/aug-cc-pV5Z-PP combination phosphorescent emission results. The values found are within 120 cm-1 of the zinc emission energy and 290 cm-1 of the cadmium emission energy. While this combination rigorously models spectroscopic constants for monomers, dimers, and excimers, it does not efficiently model these constants for larger clusters with available modern computational resources. It is important to show spectroscopic trends (bonding, phosphorescent excitation and emissions) as clusters increase as the monomer and dimer emission energies do not model solid state metallophilic interactions and phosphorescence. The MP2/LANL2DZ combinations show qualitative cooperative bonding trends in group oligomers and extended excimers as size increases and shape change. Changes in excitation and emission energies are also shown as a function of size and shape of the clusters.
Date: August 2008
Creator: Determan, John J.
Partner: UNT Libraries

Preparation and Stereochemistry of Reactive Intermediates Containing a Silicon-Carbon Double Bond

Description: 1,1-Dimethyl-2-neopentylsilene reacted with the N-methylimine of benzophenone to give 1,2,2-trimethyl-3- neopentyl-4,4-diphenyl-l-aza-2-silacyclobutane, I, and 2,3,4,4a-tetrahydro-2,3,3-trimethyl-1-phenyl-4-neopentyl-2- aza-3-silanephthalene, II, in 35% and 20% yields, respectively. Compounds I and II did not serve as thermal silene precursors. Heating I and II to over 280°C did not yield 1,3-disilacyclobutanes. In the presence of 2,3- dimethyl-1,3-butadiene typical silene products were not obtained. However, I and II reacted rapidly with methanol at room temperature to give the ring-opened products (E)-2- methoxy-2,5,5-trimethyl-2-silahex-3-ene, III, 1,1- diphenyldimethylamine, IV, and 2-methoxy-2,5,5-trimethyl-3- (N-methylaminodiphenyl) methyl-2-silahexane, V.
Date: December 1991
Creator: Uang, Shinian
Partner: UNT Libraries

Studies of Solvent Displacement from Solvated Metal Carbonyl Complexes of Chromium, Molybdenum, and Tungsten

Description: Flash photolysis techniques were applied to studies of solvent displacement by Lewis bases (L) from solvated metal carbonyl complexes of Cr, Mo, and W. On the basis of extensive studies of the reaction rate laws, activation parameters , and linear-free-energy-relationships, it was concluded that the mechanisms of solvent displacement reactions depend on the electronic and steric properties of the solvents and L, as well as the identities of the metal atoms. The strengths of solvent-metal bonding interactions, varying from ca. 7 to 16 kcal/mol, and the bonding "modes" of solvents to metals are sensitive to the structures of the solvent molecules and the identities of the metal centers. The results indicate dissociative desolvation pathways for many arene solvents in (solvent)Cr(CO)_5 (solvent = benzene, fluorobenzene, toluene, etc.) complexes, and are consistent with competitive interchange and dissociative pathways for (n-heptane)M(CO)_5. Different types of (arene)-Cr(CO)_5 interactions were suggested for chlorobenzene (CB) vs. fluorobenzene and other non-halogenated arenes, i.e. via σ-halogen-Cr bond formation in the CB solvate vs. π-arene-Cr bond formation through "isolated" double bonds in solvates of the other arenes. The data also indicate the increasing importance of interchange pathways for solvent displacement from the solvates of Mo and W vs. that of Cr.
Date: August 1990
Creator: Zhang, Shulin
Partner: UNT Libraries

Investigations of Thermochemistry and the Kinetics of H Atom Radical Reactions

Description: The thermochemistry of several species, and the kinetics of various H atom radical reactions relevant to atmospheric and combustion chemistry were investigated using ab initio theoretical techniques and the flash photolysis / resonance fluorescence technique. Using ab initio quantum mechanical calculations up to the G3 level of theory, the C-H bond strengths of several alkanes were calculated. The bond strengths were calculated using two working reactions. From the results, it is apparent that the bond strengths decrease as methyl groups are added to the central carbon. The results are in good agreement with recent experimental halogenation kinetic studies. Hydrogen bond strengths with sulfur and oxygen were studied via CCSD(T) theory, together with extrapolation to the complete basis set limit. The results for the bond dissociation energies (ground state at 0 K, units: kJ mol-1) are: S-H = 349.9, S-D = 354.7, HS-H = 376.2, DS-D = 383.4, and HO-H = 492.6. These data compare well with experimental literature. The rate constants for the isotopic reactions of H + H2S, D + H2S, H + D2S, and D + D2S are studied at the QCISD(T)/6-311+G(3df,2p) level of theory. The contributions of the exchange reaction versus abstraction are examined through transition state theory. The energy of NS was computed via CCSD(T) theory, together with extrapolation to the complete basis set limit. The results were employed with three working reactions to find ΔfH0(NS) = 277.3 ± 2 kJ mol-1 and ΔfH298(NS) = 278.0 ± 2 kJ mol-1. This thermochemistry is consistent with, but much more precise than, earlier literature values. A kinetic study of the reaction of H + CH2CCl2 was conducted over the temperature range of 298 - 680 K. The reaction was found to be pressure dependent and results of the rate constants and their interpretation via unimolecular rate theory are ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2002
Creator: Peebles, Lynda Renee
Partner: UNT Libraries

Nanohardness and chemical bonding of Boron Nitride films

Description: Boron-nitride (BN) films are deposited by the reactive sputter deposition of fully dense, boron targets utilizing a planar magnetron source and an argon-nitrogen working gas mixture. Near-edge x-ray absorption fine structure analysis reveals distinguishing features of chemical bonding within the boron is photoabsorption cross-section. The hardness of the BN film surface is measured using nanoindentation. The sputter deposition conditions as well as the post-deposition treatments of annealing and nitrogen-ion implantation effect the chemical bonding and the film hardness. A model is proposed to quantify the film hardness using the relative peak intensities of the p*-resonances to the boron 1s spectra.
Date: July 8, 1998
Creator: Jankowski, A F
Partner: UNT Libraries Government Documents Department

Monte Carlo Simulations of Phosphate Polyhedron Connectivity in Glasses

Description: Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.
Date: December 21, 1999
Creator: ALAM,TODD M.
Partner: UNT Libraries Government Documents Department

Grain boundaries and mechanical properties of nanocrystalline diamond films.

Description: Phase-pure nanocrystalline diamond thin films grown from plasmas of a hydrogen-poor carbon argon gas mixture have been analyzed regarding their hardness and elastic moduli by means of a microindentor and a scanning acoustic microscope.The films are superhard and the moduli rival single crystal diamond. In addition, Raman spectroscopy with an excitation wavelength of 1064 nm shows a peak at 1438 l/cm and no peak above 1500 l/cm, and X-ray photoelectron spectroscopy a shake-up loss at 4.2 eV. This gives strong evidence for the existence of solitary double bonds in the films. The hardness and elasticity of the films then are explained by the assumption, that the solitary double bonds interconnect the nanocrystals in the films, leading to an intergrain boundary adhesion of similar strength as the intragrain diamond cohesion. The results are in good agreement with recent simulations of high-energy grain boundaries.
Date: August 6, 1999
Creator: Busmann, H.-G.; Pageler, A. & Gruen, D. M.
Partner: UNT Libraries Government Documents Department

Competitive ion kinetics in direct mass spectrometric organic speciation. 1993 Progress report

Description: The following joint projects are either in progress, or have been completed. (1) Southern Illinois University, Prof. S. Scheiner--Combined experimental-theoretical study of the thermochemistry of protonation, complexation, and hydration of di- and polyfunctional ethers. (2) Eastern illinois University, Prof. C. Deakyne--Essentially the same framework as above. The focus here was to determine whether C or N lone pair electrons were more effective in forming ionic hydrogen bonds. (3) Virginia Commonwealth University-Prof. S. El-Shall--The author put the wrap on a joint thermochemical (NIST) and beam expansion study (VCU) which probed structures and stabilities of methanol clusters incorporating either CH{sub 3}CN or (CH{sub 3}){sub 3}N. MeCN and TMA were chosen because of their widely differing proton affinities (PA`s) and the fact that they form single H-bonds (i.e., complex intraclusters involving multiple bonding are unlikely). (4) University of Maryland-Baltimore County-Prof. J. Liebman and the Phillips Laboratory Supercomputer Center, Kirtland Air Force Base, NM-A. Fant--One of the most perplexing problems among physical organic chemists has involved the site of protonation of a class of molecules referred to as quinones and, in particular, the symmetric member, para-benzoquinone, C{sub 6}H{sub 4} (=O{sub 2}), designated below as PBQ. Possible protonation sites either the ring or carbonyl function.
Date: December 31, 1993
Creator: Sieck, L.W.
Partner: UNT Libraries Government Documents Department

Nitrogen implantation effects on the chemical bonding and hardness of boron and boron nitride coatings

Description: Boron nitride (BN) coatings are deposited by the reactive sputtering of fully dense, boron (B) targets utilizing an argon-nitrogen (Ar-N{sub 2}) reactive gas mixture. Near-edge x-ray absorption fine structure analysis reveals features of chemical bonding in the B 1s photoabsorption spectrum. Hardness is measured at the film surface using nanoindentation. The BN coatings prepared at low, sputter gas pressure with substrate heating are found to have bonding characteristic of a defected hexagonal phase. The coatings are subjected to post-deposition nitrogen (N{sup +} and N{sub 2}{sup +}) implantation at different energies and current densities. The changes in film hardness attributed to the implantation can be correlated to changes observed in the B 1s NEXAFS spectra.
Date: February 8, 1999
Creator: Anders, S; Felter, T; Hayes, J; Jankowski, A F; Patterson, R; Poker, D et al.
Partner: UNT Libraries Government Documents Department

First-principles study of {pi}-bonded (100) planar defects in diamond.

Description: A periodic density functional study of the high-energy {pi}-bonded (100) stacking fault in diamond that can serve as a prototype of a twist grain boundary has been carried out. Information on formation energies, geometries and the electronic structure has been obtained. A single point electronic structure calculation of a {Sigma}5 twist grain boundary based on the geometry taken from a molecular dynamics simulation has also been performed.
Date: December 16, 1998
Creator: Zapol, P.
Partner: UNT Libraries Government Documents Department

Novel catalysts for methane activation. Quarterly report No. 12, July 1, 1995--September 30, 1995

Description: Fullerenes are a recently discovered allotrope of carbon that possess unusual properties, some of which may be ideal for methane activation. This project is designed to evaluate these carbon-based materials for conversion of methane into higher hydrocarbons. The project is divided into three technical tasks. Task 1 deals with synthesis and characterization of the fullerenes and fullerene soots, Task 2 with testing of the catalysts, and Task 3 with evaluation of the results and technical reporting. Due to money constraints we have not done any technical work during this period. However, we hope to continue our work and produce a final report including recommendations for future research when funds are available.
Date: December 1, 1995
Creator: Hirschon, A.S.; Du, Y. & Wu, H.J.
Partner: UNT Libraries Government Documents Department

Spectroscopy at metal cluster surfaces. Final report, September 15, 1993--September 14, 1996

Description: The focus of this research program is the study of gas phase metal clusters to evaluate their potential as models for the fundamental interactions present in catalysis. To do this, the authors characterize the chemical bonding present between the component atoms in metal clusters as well as the bonding exhibited by {open_quotes}physisorption{close_quotes} on metal atom or metal cluster surfaces. Electronic spectra, vibrational frequencies and bond dissociation energies are measured for both neutral and ionized clusters with a variety of laser/mass spectrometry techniques. The authors are particularly interested in bimetallic cluster systems, and how their properties compare to those of corresponding pure metal clusters.
Date: June 1, 1998
Creator: Duncan, M.A.
Partner: UNT Libraries Government Documents Department

Formation and diffusion of S-decorated clusters on Cu(111)

Description: Because of their strong internal bonding, S-decorated Cu trimers are a likely agent of S-enhanced Cu transport between islands on Cu(111). According to ab-initio calculations, excellent healing of dangling Cu valence results in an ad-Cu{sub 3}S{sub 3} formation energy of only {approximately}0.28 eV, compared to 0.79 eV for a self-adsorbed Cu atom, and a diffusion barrier {le}0.35 eV.
Date: March 21, 2000
Partner: UNT Libraries Government Documents Department

NMR studies of bond arrangements in alkali phosphate glasses

Description: Solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy has become a powerful tool for the investigation of local structure and medium range order in glasses. Previous {sup 31}P MAS NMR studies have detailed the local structure for a series of phosphate glasses. Phosphate tetrahedra within the glass network are commonly described using the Q{sup n} notation, where n = 0, 1, 2, 3 and represents the number of bridging oxygens attached to the phosphate. Using {sup 31}P MAS NMR different phosphate environments are readily identified and quantified. In this paper, the authors present a brief description of recent one dimensional (1D) {sup 6}Li, {sup 7}Li and {sup 31}P MAS experiments along with two-dimensional (2D) {sup 31}P exchange NMR experiments for a series of lithium ultraphosphate glasses. From the 2D exchange experiments the connectivities between different Q{sup n} phosphate tetrahedra were directly measured, while the 1D experiments provided a measure of the P-O-P bond angle distribution and lithium coordination number as a function of Li{sub 2}O concentration.
Date: January 1, 1998
Creator: Alam, T.M. & Brow, R.K.
Partner: UNT Libraries Government Documents Department

Energies of organic compounds

Description: The studies included hydrolysis of ketals, hydration of alkenes, barrier to rotation about C-O bonds in esters and acids, hydrolysis of lactones, reduction of ketones, non-bonded interactions, and enthalpies of vaporization of ketones, ketals, and other compounds.
Date: July 1, 1995
Creator: Wiberg, K.B.
Partner: UNT Libraries Government Documents Department

Monte Carlo simulations of phosphate polyhedron connectivity in glasses

Description: Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.
Date: January 1, 2000
Creator: ALAM,TODD M.
Partner: UNT Libraries Government Documents Department