406 Matching Results

Search Results

Advanced search parameters have been applied.

Low-level waste vitrification pilot-scale system need report

Description: This report examines the need for pilot-scale testing in support of the low-level vitrification facility at Hanford. In addition, the report examines the availability of on-site facilities to contain a pilot-plant. It is recommended that a non-radioactive pilot-plant be operated for extended periods. In addition, it is recommended that two small-scale systems, one processing radioactive waste feed and one processing a simulated waste feed be used for validation of waste simulants. The actual scale of the pilot-plant will be determined from the technologies included in conceptual design of the plant. However, for the purposes of this review, a plant of 5 to 10 metric ton/day of glass production was assumed. It is recommended that a detailed data needs package and integrated flowsheet be developed in FY95 to clearly identify data requirements and identify relationships with other TWRS elements. A pilot-plant will contribute to the reduction of uncertainty in the design and initial operation of the vitrification facility to an acceptable level. Prior to pilot-scale testing, the components will not have been operated as an integrated system and will not have been tested for extended operating periods. Testing for extended periods at pilot-scale will allow verification of the flowsheet including the effects of recycle streams. In addition, extended testing will allow evaluation of wear, corrosion and mechanical reality of individual components, potential accumulations within the components, and the sensitivity of the process to operating conditions. Also, the pilot facility will provide evidence that the facility will meet radioactive and nonradioactive environmental release limits, and increase the confidence in scale-up. The pilot-scale testing data and resulting improvements in the vitrification facility design will reduce the time required for cold chemical testing in the vitrification facility.
Date: March 1, 1996
Creator: Morrissey, M.F. & Whitney, L.D.
Partner: UNT Libraries Government Documents Department

Glass melter system technologies for vitrification of high-sodium-content low-level, radioactive, liquid wastes: Phase 1, SBS demonstration with simulated low-level waste. Final test report

Description: The attached vendor report was prepared for Westinghouse Hanford Company by Babcock & Wilcox as documentation of the Phase I Final Test Report, Cyclone Combustion Melter Demonstration.
Date: December 31, 1995
Creator: Holmes, M.J.; Scotto, M.V. & Shiao, S.Y.
Partner: UNT Libraries Government Documents Department

Cesium determination for the DWPF off-gas system performance test

Description: In an effort to determine the cesium decontamination factors (DF`s) of the Defense Waste Processing Facility (DWPF) melter off-gas system at the Savannah River Site, the system was verified during an off-gas performance test. The off-gas performance test occurred during the DWPF waste Qualification Campaigns, WP-16 and WP-17. The verification of the off-gas system, which eliminated the need for a startup test involving a radioactive cesium addition, was based on the analysis of nonradioactive cesium across the first and second stage High Efficiency Particulate Air (HEPA) filters. The amount of cesium on the first and second stage HEPA filters was determined by leaching samples from each HEPA filter with nitric acid and analyzing the leachate using Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). The ICP-MS method has been demonstrated to be sufficiently sensitive to measure small quantities of cesium on filters. Based on the cesium results of the HEPA filter, cesium DF`s were calculated. The DF`s indicated that the DWPF HEPA filters performed better than the design basis. In addition to the HEPA filters, a determination of the cesium concentration in the melter feed, the canister glass and the off-gas condensate was made. These analyses provided information on cesium flow through the DWPF. This paper will focus on the methods used in the determination of nonradioactive cesium and the calculation of the DF`s for the DWPF melter off-gas system.
Date: April 11, 1996
Creator: Andrews, M.K.; Elder, H.H. & Boyce, W.T.
Partner: UNT Libraries Government Documents Department

Technical information report: Plasma melter operation, reliability, and maintenance analysis

Description: This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences.
Date: March 14, 1995
Creator: Hendrickson, D.W.
Partner: UNT Libraries Government Documents Department

Test plan for glass melter system technologies for vitrification of high-sodium content low-level radioactive liquid waste, Project No. RDD-43288

Description: This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock & Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing.
Date: March 15, 1995
Creator: Higley, B.A.
Partner: UNT Libraries Government Documents Department

HWVP melter lifetime prediction letter

Description: Preliminary predictions were made of the time to reach hypothesized operational limits of the HWVP melter due to build up of a noble metals sludge layer on the melter floor. Predictions were made with the TEMPEST computer program, Version T2.9h, for use in the MPA activity in the Pacific Northwest Laboratory`s (PNL) Hanford Waste Vitrification Plant (HWVP) Technology Development (PHTD) effort. The NWEST computer program (Trent and Eyler 1993) is a PNL-MA-70/Part 2 -- Good Practices Standard (QA Level III) research and development software tool.
Date: March 1, 1996
Creator: Eyler, L.L.; Mahoney, L.A. & Elliott, M.L.
Partner: UNT Libraries Government Documents Department

Ammonia scrubber testing during IDMS SRAT and SME processing. Revision 1

Description: This report summarizes results of the Integrated DWPF (Defense Waste Processing Facility) Melter System (IDMS) ammonia scrubber testing during the PX-7 run (the 7th IDMS run with a Purex type sludge). Operation of the ammonia scrubber during IDMS Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processing has been completed. The ammonia scrubber was successful in removing ammonia from the vapor stream to achieve NH3 concentrations far below the 10 ppM vapor exist design basis during SRAT processing. However, during SME processing, vapor NH3 concentrations as high as 450 ppM were measured exiting the scrubber. Problems during the SRAT and SME testing were vapor bypassing the scrubber and inefficient scrubbing of the ammonia at the end of the SME cycle (50% removal efficiency; 99.9% is design basis efficiency).
Date: April 28, 1995
Creator: Lambert, D.P.
Partner: UNT Libraries Government Documents Department

Design of microwave vitrification systems for radioactive waste

Description: Oak Ridge National Laboratory (ORNL) is involved in the research and development of high-power microwave heating systems for the vitrification of Department of Energy (DOE) radioactive sludges. Design criteria for a continuous microwave vitrification system capable of processing a surrogate filtercake sludge representative of a typical waste-water treatment operation are discussed. A prototype 915-MHz, 75-kW microwave vitrification system or ``microwave melter`` is described along with some early experimental results that demonstrate a 4 to 1 volume reduction of a surrogate ORNL filtercake sludge.
Date: December 31, 1995
Creator: White, T.L.; Wilson, C.T.; Schaich, C.R. & Bostick, T.L.
Partner: UNT Libraries Government Documents Department

Americium/curium bushing melter drain tests

Description: Americium and curium were produced in the past at the Savannah River Site (SRS) for research, medical, and radiological applications. They have been stored in a nitric acid solution in an SRS reprocessing facility for a number of years. Vitrification of the americium/curium (Am/Cm) solution will allow the material to be safely stored or transported to the DOE Oak Ridge Reservation. Oak Ridge is responsible for marketing radionuclides for research and medical applications. The bushing melter technology being used in the Am/Cm vitrification research work is also under consideration for the stabilization of other actinides such as neptunium and plutonium. A series of melter drain tests were conducted at the Savannah River Technology Center to determine the relationship between the drain tube assembly operating variables and the resulting pour initiation times, glass flowrates, drain tube temperatures, and stop pour times. Performance criteria such as ability to start and stop pours in a controlled manner were also evaluated. The tests were also intended to provide support of oil modeling of drain tube performance predictions and thermal modeling of the drain tube and drain tube heater assembly. These drain tests were instrumental in the design of subsequent melter drain tube and drain tube heaters for the Am/Cm bushing melter, and therefore in the success of the Am/Cm vitrification and plutonium immobilization programs.
Date: July 1, 1997
Creator: Smith, M.E.; Hardy, B.J. & Smith, M.E.
Partner: UNT Libraries Government Documents Department

Investigation of waste glass pouring behavior over a knife edge

Description: The development of vitrification technology for converting radioactive waste into a glass solid began in the early 1960s. Some problems encountered in the vitrification process are still waiting for a solution. One of them is wicking. During pouring, the glass stream flows down the wall of the pour spout until it reaches an angled cut in the wall. At this point, the stream is supposed to break cleanly away from the wall of the pour spout and fall freely into the canister. However, the glass stream is often pulled toward the wall and does not always fall into the canister, a phenomenon known as wicking. Phase 1 involves the assembly, construction, and testing of a melter capable of supplying molten glass at operational flow rates over a break-off point knife edge. Phase 2 will evaluate the effects of glass and pour spout temperatures as well as glass flow rates on the glass flow behavior over the knife edge. Phase 3 will identify the effects on wicking resulting from varying the knife edge diameter and height as well as changing the back-cut angle of the knife edge. The following tasks were completed in FY97: Design the experimental system for glass melting and pouring; Acquire and assemble the melter system; and Perform initial research work.
Date: January 1, 1998
Creator: Ebadian, M.A.
Partner: UNT Libraries Government Documents Department

Development of a melter system for actinide vitrification. Revision 1

Description: The stabilization of actinides in glass was a technology considered for repository disposal of weapons-grade plutonium. Accelerated development efforts of a suitable glass composition (lanthanide borosilicate; LaBS) and melter system were completed in 1997. The other form involved in the down-selection process was a crystalline ceramic based on Synroc. As part of the glass development program, melter design activities and component testing were completed to demonstrate the feasibility of using glass as an immobilization medium. A prototypical melter was designed and built in 1997. The melter system centered on a Pt/Rh-alloy melter vessel and drain tube that were heated by two separate induction systems. An optional Pt/Rh stirrer was incorporated into the design to facilitate homogenization of the melt. Integrated powder feeding and off-gas systems completed the overall design. Concurrent with the design efforts, testing was conducted using a plutonium surrogate LaBS composition in an existing (near-scale) induction melter to demonstrate the feasibility of processing the LaBS glass on a production scale. Additionally, the drain tube configuration was successfully tested using a plutonium surrogate LaBS glass. The down-selection resulted in the selection of the ceramic option for future development. The successful testing of the induction melter system, however, showed that it is a viable technology for actinide vitrification. Currently, the melter system, complete with control and offgas components, is being successfully utilized to support the Americium/Curium vitrification program at the Savannah River Site.
Date: April 1998
Creator: Marshall, K. M.; Marra, J. C.; Coughlin, J. T.; Calloway, T. B.; Schumacher, R. F.; Zamecnik, J. R. et al.
Partner: UNT Libraries Government Documents Department

Melt rate predictions for slurry-fed glass melters

Description: Numerous bench-scale and pilot-scale tests have been conducted to support high-level waste vitrification projects within DOE. These projects include the Hanford Waste Vitrification Plant (HWP), the Defense Waste Processing Facility (DWPF), and the West Valley Demonstration Project (MNDP). Testing for these projects has investigated aspects of the vitrification process such as the pumpability of the slurry feed, melter processing rates, melter scale-up, and off-gas decontamination factors for feed constituents. The high costs for testing have generated interest in using modeling to predict major processing impacts on the vitrification systems from any given feed material. Important components required for such modeling include feed composition, feed rheology, melter glass temperature, melter geometry, and melter power configurations. I Some work has already been performed in modeling glass melters, but little attention has been given to feed composition (Routt 1982).
Date: March 1, 1996
Creator: Freeman, C.J.
Partner: UNT Libraries Government Documents Department

Baseline milestone HWVP-87-V110202F: Preliminary evaluation of noble metal behavior in the Hanford waste vitrification plant reference glass HW-39

Description: The precipitation and aggregation of ruthenium (Ru), rhodium (RLh) and palladium (Pd) in the Hanford Waste Vitrification Plant (HWVP) low chromium reference glass HLW-39 were investigated to determine if there is a potential for formation of a noble metal sludge in the HWVP ceramic melter. Significant noble metal accumulations on the floor of the melter will result in the electrical shorting of the electrodes and premature failure of the melter. The purpose of this study was to obtain preliminary information on the characteristics of noble metals in a simulated HWVP glass. Following a preliminary literature view to obtain information concerning the noble metals behavior, a number of variability studies were initiated. The effects of glass redox conditions, melt temperature, melting time and noble metal concentration on the phase characteristics of these noble metals were examined.
Date: March 1, 1996
Creator: Geldart, R.W.; Bates, S.O. & Jette, S.J.
Partner: UNT Libraries Government Documents Department

Operation of a bushing melter system designed for actinide vitrification

Description: The Westinghouse Savannah River Company is developing a melter system to vitrify actinide materials. The melter system will used to vitrify the americium and curium solution which is currently stored in one of the Savannah River Site`s (SRS) processing canyons. This solution is one of the materials designated by the Defense Nuclear Facilities Safety Board (DNFSB) to be dispositioned as part of the DNFSB recommendation 94-1. The Am/Cm solution contains an extremely large fraction (>2 kilograms of Cm and 10 kilograms of Am) of t he United States`s total inventory of both elements. They have an estimated value on the order of one billion dollars - if they are processed through the DOE Isotope Sales program at the Oak Ridge National Laboratory. It is therefore deemed highly desirable to transfer the material to Oak Ridge in a form which can allow for recovery of the material. A commercial glass composition has been demonstrated to be compatible with up to 40 weight percent of the Am/Cm solution contents. This glass is also selectively attacked by nitric acid. This allows the actinide to be recovered by common separation processes.
Date: March 1, 1996
Creator: Ramsey, W.G.
Partner: UNT Libraries Government Documents Department

Slurry sampling in a radioactive waste vitrification facility

Description: The next total-system performance-assessment (TSPA) analyses are designed to aid DOE in performing an ``investment analysis`` for Yucca Mountain. This TSPA must try to bound the uncertainties for several issues that will contribute to the decision whether the US should proceed with the development of a nuclear-waste repository at Yucca Mountain. Because site-characterization experiments and data collection will continue for the foreseeable future, the next TSPA (called TSPA-IA) will again only be able to use partially developed models and partial data sets. In contrast to previous analyses however, TSPA-IA must address more specific questions to be of assistance to the investment-analysis deliberations.
Date: December 1, 1995
Creator: Steimke, J.L.
Partner: UNT Libraries Government Documents Department

Letter report: Cold crucible melter assessment

Description: One of the activities of the PNL Vitrification Technology Development (PVTD) Project is to assist the Tank Waste Remediation Systems (TWRS) Program in determining which melter systems should be performance tested for potential implementation in the high-level waste (HLW) vitrification plant. The Richland Operations Office (RL) has recommended that the Cold Crucible Melter (CCM) be evaluated as a candidate ``next generation`` melter. As a result, the CCM System Evaluation cost account was established under the PVTD Project so that the CCM could be initially assessed on a high-priority basis. This letter report summarizes a brief initial review and assessment of the CCM. Using the recommendations made in this document, Westinghouse Hanford Company (WHC) and RL will make a decision regarding the urgency of performance testing the CCM. If the decision is favorable, a subcontract will be negotiated for performance testing of a CCM using Hanford HLW simulants in a pilot-scale facility. Because of the aggressive nature of the schedule, the CCM evaluation was not rigorous. The evaluation consisted of a literature review and interviews with proponents of the technology during a recent trip to France. This letter report summarizes the evaluation and makes recommendations regarding further work in this area.
Date: March 1, 1996
Creator: Elliott, M.L.
Partner: UNT Libraries Government Documents Department

Test Plan: Phase 1, Hanford LLW melter tests, GTS Duratek, Inc.

Description: This document provides a test plan for the conduct of vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384215] is GTS Duratek, Inc., Columbia, Maryland. The GTS Duratek project manager for this work is J. Ruller. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a DuraMelter{trademark} vitrification system.
Date: June 14, 1995
Creator: Eaton, W.C.
Partner: UNT Libraries Government Documents Department

Modeling of Spinel Settling in Waste Glass Melter

Description: Our objective is to determine the fraction and size of spinel crystals in molten HLW glass that are compatible with low-risk melter operation. To this end, we are investigating spinel behavior in HLW glass and obtaining data to be used in a mathematical model for spinel settling in a HLW glass melter. We will modify the current glass-furnace model to incorporate spinel concentration distribution and to predict the rate of spinel settling. Also, we will determine the nucleation agents that control the number density and size of spinel crystals in HLW glass.
Date: June 1, 2000
Creator: Hrma, Pavel; Schill, Petr; Nemec, Lubomir; Klouzek, Jaroslav, Mika, Martin & Brada, Jiri Glass Service, Ltd., Vsetin, Czech Republic
Partner: UNT Libraries Government Documents Department


Description: This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of joule-heated ceramic lined melters and their application to Hanford's low-activity waste.
Date: April 7, 2011
Creator: SE, KELLY
Partner: UNT Libraries Government Documents Department

Rheology enhancement for remediated PX6 melter feed

Description: This document is referenced in WSRC-TR-94-0556. This memorandum summarizes results of experimental work performed on the original IDMS PX6 melter feed, the remediated IDMS PX6 melter feed, and melter feeds produced in a laboratory simulation to duplicate the IDMS remediation as well as the experimental results on the caustic treatment to enhance the rheology. Characterization of the products of excess caustic addition and what steps to take if excess caustic is inadvertently added to the IDMS PX6 melter feed are also discussed
Date: August 23, 1996
Creator: Marek, J.C. & Eibling, R.E.
Partner: UNT Libraries Government Documents Department

Letter report: Minor component study for low-level radioactive waste glasses

Description: During the waste vitrification process, troublesome minor components in low-level radioactive waste streams could adversely affect either waste vitrification rate or melter life-time. Knowing the solubility limits for these minor components is important to determine pretreatment options for waste streams and glass formulation to prevent or to minimize these problems during the waste vitrification. A joint study between Pacific Northwest Laboratory and Rensselaer Polytechnic Institute has been conducted to determine minor component impacts in low-level nuclear waste glass.
Date: March 1, 1996
Creator: Li, H.
Partner: UNT Libraries Government Documents Department

Strategy for addressing composition uncertainties in a Hanford high-level waste vitrification plant

Description: Various requirements will be imposed on the feed material and glass produced by the high-level waste (HLW) vitrification plant at the Hanford Site. A statistical process/product control system will be used to control the melter feed composition and to check and document product quality. Two general types of uncertainty are important in HLW vitrification process/product control: model uncertainty and composition uncertainty. Model uncertainty is discussed by Hrma, Piepel, et al. (1994). Composition uncertainty includes the uncertainties inherent in estimates of feed composition and other process measurements. Because feed composition is a multivariate quantity, multivariate estimates of composition uncertainty (i.e., covariance matrices) are required. Three components of composition uncertainty will play a role in estimating and checking batch and glass attributes: batch-to-batch variability, within-batch uncertainty, and analytical uncertainty. This document reviews the techniques to be used in estimating and updating composition uncertainties and in combining these composition uncertainties with model uncertainty to yield estimates of (univariate) uncertainties associated with estimates of batch and glass properties.
Date: March 1, 1996
Creator: Bryan, M.F. & Piepel, G.F.
Partner: UNT Libraries Government Documents Department

Demonstration of oxygen-enriched air staging at Owens-Brockway glass containers. Quarterly report. Feb. 1, 1996--Apr. 30, 1996

Description: Objective is to demonstrate use of a previously developed combustion modification technology to reduce NO{sub x} emissions from sideport regenerative container glass melters. Host furnace is an Owens- Brockway 6-port pair sideport furnace in Vernon CA producing 325- ton/d of amber container glass. Baseline NO{sub x} level is 4.0 lb/ton glass; an anticipated NO{sub x} reduction of 50% would lower this to below 2 lb/ton. With the OEAS operating on only one of the 6 ports, an overall NO{sub x} reduction of 8-10% was obtained, suggesting that an overall furnance NO{sub x} reduction of 50% can be achieved.
Date: July 1, 1996
Partner: UNT Libraries Government Documents Department