314 Matching Results

Search Results

Advanced search parameters have been applied.

Causes of Variation in Chemical Analyses and Physical Tests of Portland Cement

Description: Report discussing variations in comparative tests of portland cements that could lead to the rejection of a material fully conforming to specification requirements, or the acceptance of a material with undesirable chemical or physical properties. Many of the causes for variation in chemical analyses and physical test results are listed in this discussion, and remedies for some of the more frequently encountered deficiencies in apparatus and methods are suggested.
Date: April 27, 1961
Creator: Bean, B. Leonard & Dise, John R.
Partner: UNT Libraries Government Documents Department

CSER 96-013: Cementation Process, glovebox HA-20MB at PFP

Description: This evaluation provides criticality safety controls for the cementation processing in Glovebox HA-2OMB at the Plutonium Finishing Plant. Slag and crucible residues from Pu button making will be blended with Portland cement in 5k-in. diam. x 7-in. tall cans, for eventual disposition in special DOT 17C drums. A maximum of 180 g Pu is allowed per liquid-bearing container (mixing bowl, filter funnel, or cement can). In this SD revision, three separate areas with 500 g Pu limits each are established; the airlock cell for input S&C cans, the reaction- and mixing-process area, and a cemented-can storage area. Number and spacing of containers within an area is not restricted, for areas spaced 6 inches apart. Acid addition in the reaction stage is allowed to the extent that plutonium dissolution will not occur.
Date: September 1, 1996
Creator: Hess, A.L.
Partner: UNT Libraries Government Documents Department

Arctic Energy Technology Development Laboratory (Part 3)

Description: Various laboratory tests were carried at the R & D facility of BJ Services in Tomball, TX with BJ Services staff to predict and evaluate the performance of the Ceramicrete slurry for its effective use in permafrost cementing operations. Although other standards such as those of the American Standard for Testing Materials (ASTM) and Construction Specification Institute (CSI) exist, all these tests were standardized by the API. A summary of the tests traditionally used in the cement slurry design as well as the API tests reference document are provided in Table 7. All of these tests were performed within the scope of this research to evaluate properties of the Ceramicrete.
Date: December 31, 2008
Creator: 960443, See OSTI ID Number
Partner: UNT Libraries Government Documents Department

ULTRA-LIGHTWEIGHT CEMENT

Description: The objective of this project is to develop an improved ultra- lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.
Date: October 31, 2003
Creator: Sabins, Fred
Partner: UNT Libraries Government Documents Department

DEVELOPMENT OF BYPASSED OIL RESERVES USING BEHIND CASING RESISTIVITY MEASUREMENTS

Description: Tubing and rods of the S.P. Pedro-Nepple No.1 well were pulled and the well was prepared for running of Schlumberger's Cased Hole Formation Resistivity Tool (CHFR) in selected intervals. The CHFR tool was successfully run and data was captured. The CHFR formation resistivity readings were compared to original open hole resistivity measurements. Separation between the original and CHFR resistivity curves indicate both swept and un-swept sand intervals. Both watered out sand intervals and those with higher remaining oil saturation have been identified. Due to the nature of these turbidite sands being stratigraphically continuous, both the swept and unswept layers have been correlated across to one of the four nearby offset shallow wells. As a result of the cased hole logging, one well was selected for a workover to recomplete and test suspected oil saturated shallow sand intervals. Well S.P. Pedro-Nepple No.2 was plugged back with cement excluding the previously existing production interval, squeeze cemented behind casing, selectively perforated in the shallower ''Bell'' zone and placed on production to develop potential new oil reserves and increase overall well productivity. Prior workover production averaged 3.0 BOPD for the previous six-months from the original ''Meyer'' completion interval. Post workover well production was increased to 5.3 BOPD on average for the following fifteen months. In December 2005, a bridge plug was installed above the ''Bell'' zone to test the ''Foix'' zone. Another cement squeeze was performed behind casing, selectively perforated in the shallower ''Foix'' zone and placed on production. The ''Foix'' test has produced water and a trace of oil for two months.
Date: April 2, 2006
Creator: Conner, Michael G. & Blesener, Jeffrey A.
Partner: UNT Libraries Government Documents Department

DEVELOPMENT OF BYPASSED OIL RESERVES USING BEHIND CASING RESISTIVITY MEASUREMENTS

Description: Tubing and rods of the S.P. Pedro-Nepple No.1 well were pulled and the well was prepared for running of Schlumberger's Cased Hole Formation Resistivity Tool (CHFR) in selected intervals. The CHFR tool was successfully run and data was captured. The CHFR formation resistivity readings were compared to original open hole resistivity measurements. Separation between the original and CHFR resistivity curves indicate both swept and un-swept sand intervals. Both watered out sand intervals and those with higher remaining oil saturation have been identified. Due to the nature of these turbidite sands being stratigraphically continuous, both the swept and unswept layers have been correlated across to one of the four nearby offset shallow wells. As a result of the cased hole logging, one well was selected for a workover to recomplete high oil saturated shallow sand intervals. During the second report period, well S.P. Pedro-Nepple No.2 was plugged back with cement excluding the previously existing production interval, squeeze cemented behind casing, selectively perforated in the shallower ''Bell'' zone and placed on production to develop potential new oil reserves and increase overall well productivity. Prior workover production averaged 3.0 BOPD for the previous six-months. Post workover well production was marginally increased to 3.7 BOPD on average for the following six months.
Date: February 7, 2005
Creator: Conner, Michael G. & Blesener, Jeffrey A.
Partner: UNT Libraries Government Documents Department

Plastic-casting intrinsic-surface unique identifier (tag)

Description: This report describes the development of an authenticated intrinsic-surf ace tagging method for unique- identification of controlled items. Although developed for control of items limited by an arms control treaty, this method has other potential applications to keep track of critical or high-value items. Each tag (unique-identifier) consists of the intrinsic, microscopic surface topography of a small designated area on a controlled item. It is implemented by making a baseline plastic casting of the designated tag area and usually placing a cover (for example, a bar-code label) over this area to protect the surface from environmental alteration. The plastic casting is returned to a laboratory and prepared for high-resolution scanning electron microscope imaging. Several images are digitized and stored for use as a standard for authentication of castings taken during future inspections. Authentication is determined by numerically comparing digital images. Commercially available hardware and software are used for this tag. Tag parameters are optimized, so unique casting images are obtained from original surfaces, and images obtained from attempted duplicate surfaces are detected. This optimization uses the modulation transfer function, a first principle of image analysis, to determine the parameters. Surface duplication experiments confirmed the optimization.
Date: April 1, 1995
Creator: Palm, R.G. & De Volpi, A.
Partner: UNT Libraries Government Documents Department

Bleed water testing program for controlled low strength material

Description: Bleed water measurements for two Controlled Low Strength Material (CLSM) mixes were conducted to provide engineering data for the Tank 20F closure activities. CLSM Mix 1 contained 150 pounds of cement per cubic yard whereas CLSM Mix 2 contained 50 pounds per cub yard. SRS currently used CLSM Mix 2 for various applications. Bleed water percentages and generation rates were measured along with flow and compressive strength. This information will be used to select a mix design for the Tank 20F closure activities and to establish the engineering requirements, such as, lift height, time required between lifts and quantity of bleed water to be removed from the tank during the placement activities. Mix 1 is recommended for placement within Tank 20F because it has better flow characteristics, less segregation, lower percentage of bleed water and slightly higher strength. Optimization of Mix 1 was beyond the scope of this study. However, further testing of thickening additives, such as clays (bentonite), sodium silicate or fine silicas maybe useful for decreasing or eliminating bleed water.
Date: November 12, 1996
Creator: Langton, C.A.
Partner: UNT Libraries Government Documents Department

Measurement of Thermal Properties of Saltstone

Description: Radioactive liquid effluent from the In Tank Precipitation Process is mixed with Portland cement, flyash and furnace alag to form Saltstone. The Saltstone is poured into vaults at Z Area for long term disposal. A transient heat transfer model of the Saltstone pouring process was previously written to determine whether the Saltstone temperature would exceed the Technical Specification Limit of 95 degrees C. The present work was performed to provide Saltstone density, heat capacity, heat of hydration and thermal conductivity for inclusion in the model.
Date: May 1998
Creator: Steimke, J. L. & Fowley, M. D.
Partner: UNT Libraries Government Documents Department

Quality assurance plan for placement of cold-cap grout, demonstration vault, Hanford Grout Vault Program. Final report

Description: During FY 91, the U.S. Army Engineer Waterways Experiment Station (WES) developed a grout to be used as a cold cap, a nonradioactive layer, between the solidified waste and the cover blocks of a demonstration waste disposal vault at the U.S. Department of Energy Hanford Facility. This document recommends requirements for a quality assurance (QA) plan for field mixing and placing of the cold-cap grout during final closure of the demonstration vault. Preplacement activities emphasize selection and testing of materials that will match the performance of materials used in the WES grout. Materials sources and applicable American Society of Testing and Materials, American Concrete Institute, and American Petroleum Institute specifications and requirements are provided. Archiving of physical samples of materials is essential, in addition to careful maintenance of test reports and laboratory data. Full-scale field trial mixing and a detailed preconstruction conference are recommended. Placement activities focus on production and placement of a grout that remains sufficiently constant throughout all batches and meets performance requirements. QA activities must be coordinated between the batch plant and delivery site. Recommended sampling during placement includes cylinders cast for subsequent tests of compressive strength and for nondestructive evaluation and prisms cast for monitoring volume stability. A minimum of two lifts is recommended. Postplacement activities include long-term monitoring of the properties of grout specimens cast during placement. Minimum testing of cylinders includes pulse velocity, fundamental frequency, and unconfined compressive strength. Monitoring characteristics of the microstructure also are recommended. The QA plan should designate an organization to have responsibility for maintaining complete records, reports, and archived samples, including details of deviations from plans written before field placement.
Date: August 1, 1992
Creator: Harrington, P.T.; Wakeley, L.D.; Ernzen, J.J. & Walley, D.M.
Partner: UNT Libraries Government Documents Department

ENGINEERING A NEW MATERIAL FOR HOT GAS CLEANUP

Description: The overall objective of this project is the engineering development of a reusable calcium-based sorbent for desulfurizing hot coal gas. A two-step pelletization method has been employed to produce relatively strong, ''core-in-shell,'' spherical pellets. Each pellet consists of a highly reactive core surrounded by a strong, inert, porous shell. A suitable core is composed largely of CaO which reacts with H{sub 2}S to form CaS. Pellet cores have been prepared by pelletizing either pulverized limestone or plaster of Paris, and shells have been made of various materials. The most suitable shell material has been formed from a mixture of alumina and limestone particles. The core-in-shell pellets require treatment at high temperature to convert the core material to CaO and to partially sinter the shell material. Pellet cores derived from plaster of Paris have proved superior to those derived from limestone because they react more rapidly with H{sub 2}S and their reactivity does not seem to decline with repeated loading and regeneration. The rate of reaction of H{sub 2}S with CaO derived from either material is directly proportional to H{sub 2}S concentration. The rate of reaction does not appear to be affected significantly by temperature in the range of 1113 K (840 C) to 1193 K (920 C) but decreases markedly at 1233 K (960 C). The rate is not affected by shell thickness within the range tested, which also provides adequate compressive strength.
Date: June 30, 2001
Creator: Wheelock, T.D.; Doraiswamy, L.K. & Constant, K.
Partner: UNT Libraries Government Documents Department

ULTRA-LIGHTWEIGHT CEMENT

Description: The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job.
Date: July 18, 2001
Creator: Sabins, Fred
Partner: UNT Libraries Government Documents Department

ULTRA-LIGHTWEIGHT CEMENT

Description: The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter.
Date: April 15, 2001
Creator: Sabins, Fred
Partner: UNT Libraries Government Documents Department

ULTRA-LIGHTWEIGHT CEMENT

Description: The objective of this project is to develop an improved ultra-lightweigh cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems, Task 2: Review Russian Ultra-Lightweight Cement Literature, and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary surface pipe and intermediate casing cementing conditions historically encountered in the US and establishment of average design conditions for ULHS cements. Russian literature concerning development and use of ultra-lightweight cements employing either nitrogen or ULHS was reviewed, and a summary is presented. Quality control testing of materials used to formulate ULHS cements in the laboratory was conducted to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS. This protocol is presented and discussed. finally, results of initial testing of ULHS cements is presented along with analysis to establish cement performance design criteria to be used during the remainder of the project.
Date: January 15, 2001
Creator: Sabins, Fred
Partner: UNT Libraries Government Documents Department

Enhancement of cemented waste forms by supercritical CO{sub 2} carbonation of standard portland cements

Description: We are conducting experiments on an innovative transformation concept, using a traditional immobilization technique, that may significantly reduce the volume of hazardous or radioactive waste requiring transport and long-term storage. The standard practice for the stabilization of radioactive salts and residues is to mix them with cements, which may include additives to enhance immobilization. Many of these wastes do not qualify for underground disposition, however, because they do not meet disposal requirements for free liquids, decay heat, head-space gas analysis, and/or leachability. The treatment method alters the bulk properties of a cemented waste form by greatly accelerating the natural cement-aging reactions, producing a chemically stable form having reduced free liquids, as well as reduced porosity, permeability and pH. These structural and chemical changes should allow for greater actinide loading, as well as the reduced mobility of the anions, cations, and radionuclides in aboveground and underground repositories. Simultaneously, the treatment process removes a majority of the hydrogenous material from the cement. The treatment method allows for on-line process monitoring of leachates and can be transported into the field. We will describe the general features of supercritical fluids, as well as the application of these fluids to the treatment of solid and semi-solid waste forms. some of the issues concerning the economic feasibility of industrial scale-up will be addressed, with particular attention to the engineering requirements for the establishment of on-site processing facilities. Finally, the initial results of physical property measurements made on portland cements before and after supercritical fluid processing will be presented.
Date: August 1, 1997
Creator: Rubin, J.B.; Carey, J. & Taylor, C.M.V.
Partner: UNT Libraries Government Documents Department

Long-term modeling of glass waste in portland cement- and clay-based matrices

Description: A set of ``templates`` was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra, Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ``affinity effect`` cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity.
Date: December 1995
Creator: Stockman, H. W.; Nagy, K. L. & Morris, C. E.
Partner: UNT Libraries Government Documents Department

Radionuclide transport through engineered barrier system alteration products

Description: The primary rationale for studying the transport behavior of radionuclides through the Engineered Barrier system / Near Field Environment (EBS/NFE) is to ascertain whether the material properties of the introduced and altered host rock can significantly affect the transport of radionuclides from the waste container to the far field. The intent of this report is to present data and modeling results that can be used to assess the importance of canister corrosion products and cementitious materials to transport of radionuclides to the far field.
Date: December 1, 1997
Creator: Viani, B.E.; Torretto, P.C. & Matzen, S.L.
Partner: UNT Libraries Government Documents Department

Active Well Neutron Coincidence Assays for U-235 Content in HB-Line Desicooler Repackage Campaign at the Savannah River Site

Description: At HB-Line of the Savannah River Site, 4.3 kg of U-235 have been repackaged from FB-Line Desicooler material into a cement matrix in individual one-gallon paint cans for disposition as solid waste. The 4.3 kg of U-235 material were packaged into 172 paint cans with U-235 contents ranging from 8.9 g up to 32 g. Prior to transfer to the Solid Waste Facilities, verification measurements of selected cans were performed to assure valid control of the solid waste. The HB-Line-DOE Sampling Plan designated confirmatory assays, and a total of 67 paint cans were assayed to verify the contents. The Analytical Development Section of the Savannah River National Laboratory selected an active well coincidence neutron counter as the best instrument available to accomplish the assays. The instrument was set up at-line in the thermal excitation mode, and three standard samples that contained 8.9-, 28.5-, and 32.4-g of U-235 were counted for twenty hours of acquisition time each. A linear calibration based on the observed doubles rates was installed in the instrument. Subsequent verification measurements were performed on the selected samples using fifteen one-minute active acquisitions. Of the 67 samples assayed, 53 verification measurements were within the limits greater than or less than 32 per cent prescribed by the sample plan. Eleven samples had results that were biased low by as much as 95 percent, and three samples had results that were biased high and outside of the prescribed range. Because of the extremely variable nature of the cement matrix these results were not unexpected. From the observed data we were able to use the singles rates to develop a correction factor that we could apply to the doubles rates of the eleven negatively biased results that brought each verification measurement back into the prescribed range. The three samples that had large ...
Date: July 15, 2004
Creator: DEWBERRY, RAYMOND
Partner: UNT Libraries Government Documents Department

The building materials industry in China: An overview

Description: The present study of China`s building materials industry is a collaborative work between the Energy Research Institute (ERI) of the State Planning Commission of China and Lawrence Berkeley Laboratory (LBL) of the US Department of Energy (USDOE).
Date: December 1, 1994
Creator: Liu, Feng & Wang, Shumao
Partner: UNT Libraries Government Documents Department

Sulfur polymer cement for macroencapsulation of mixed waste debris

Description: In FY 1997, the US DOE Mixed Waste Focus Area (MWFA) sponsored a demonstration of the macroencapsulation of mixed waste debris using sulfur polymer cement (SPC). Two mixed wastes were tested--a D006 waste comprised of sheets of cadmium and a D008/D009 waste comprised of lead pipes and joints contaminated with mercury. The demonstration was successful in rendering these wastes compliant with Land Disposal Restrictions (LDR), thereby eliminating one Mixed Waste Inventory Report (MWIR) waste stream from the national inventory.
Date: June 1, 1998
Creator: Mattus, C.H.
Partner: UNT Libraries Government Documents Department

Thermal denitration and mineralization of waste constituents

Description: In order to produce a quality grout from LLW using hydraulic cements, proper conditioning of the waste is essential for complete cement curing. Several technologies were investigated as options for conditions. Since the LLW is dilute, removal of all, or most, of the water will significantly reduce the final waste volume. Neutralization of the LLW is also desirable since acidic liquids to not allow cement to cure properly. The nitrate compounds are very soluble and easily leached from solid waste forms; therefore, denitration is desirable. Thermal and chemical denitration technologies have the advantages of water removal, neutralization, and denitration. The inclusion of additives during thermal treatment were investigated as a method of forming insoluable waste conditions.
Date: August 1, 1997
Creator: Nenni, J.A. & Boardman, R.D.
Partner: UNT Libraries Government Documents Department

A new and superior ultrafine cementitious grout

Description: Sealing fractures in nuclear waste repositories concerns all programs investigating deep burial as a means of disposal. Because the most likely mechanism for contaminant migration is by dissolution and movement through groundwater, sealing programs are seeking low-viscosity sealants that are chemically, mineralogically, and physically compatible with the host rock. This paper presents the results of collaborative work directed by Sandia National Laboratories (SNL) and supported by Whiteshell Laboratories, operated by Atomic Energy of Canada, Ltd. The work was undertaken in support of the Waste Isolation Pilot Plant (WIPP), an underground nuclear waste repository located in a salt formation east of Carlsbad, NM. This effort addresses the technology associated with long-term isolation of nuclear waste in a natural salt medium. The work presented is part of the WIPP plugging and sealing program, specifically the development and optimization of an ultrafine cementitious grout that can be injected to lower excessive, strain-induced hydraulic conductivity in the fractured rock termed the Disturbed Rock Zone (DRZ) surrounding underground excavations. Innovative equipment and procedures employed in the laboratory produced a usable cement-based grout; 90% of the particles were smaller than 8 microns and the average particle size was 4 microns. The process involved simultaneous wet pulverization and mixing. The grout was used for a successful in situ test underground at the WIPP. Injection of grout sealed microfractures as small as 6 microns (and in one rare instance, 3 microns) and lowered the gas transmissivity of the DRZ by up to three orders of magnitude. Following the WIPP test, additional work produced an improved version of the grout containing particles 90% smaller than 5 microns and averaging 2 microns. This grout will be produced in dry form, ready for the mixer.
Date: April 1, 1997
Creator: Ahrens, E.H.
Partner: UNT Libraries Government Documents Department

Demonstration of Mixed Waste Debris Macroencapsulation Using Sulfur Polymer Cement

Description: This report covers work performed during FY 1997 as part of the Evaluation of Sulfur Polymer Cement Fast-Track System Project. The project is in support of the ``Mercury Working Group/Mercury Treatment Demonstrations - Oak Ridge`` and is described in technical task plan (TTP) OR-16MW-61. Macroencapsulation is the treatment technology required for debris by the U.S. Environmental Protection Agency Land Disposal Restrictions (LDR) under the Resource Conservation and Recovery Act. Based upon the results of previous work performed at Oak Ridge, the concept of using sulfur polymer cement (SPC) for this purpose was submitted to the Mixed Waste Focus Area (MWFA). Because of the promising properties of the material, the MWFA accepted this Quick Win project, which was to demonstrate the feasibility of macroencapsulation of actual mixed waste debris stored on the Oak Ridge Reservation. The waste acceptance criteria from Envirocare, Utah, were chosen as a standard for the determination of the final waste form produced. During this demonstration, it was shown that SPC was a good candidate for macroencapsulation of mixed waste debris, especially when the debris pieces were dry. The matrix was found to be quite easy to use and, once the optimum operating conditions were identified, very straightforward to replicate for batch treatment. The demonstration was able to render LDR compliant more than 400 kg of mixed wastes stored at the Oak Ridge National Laboratory.
Date: July 1, 1998
Creator: Mattus, C.H.
Partner: UNT Libraries Government Documents Department

Nitrate to Ammonia Ceramic (NAC) bench scale stabilization study

Description: Department of Energy (DOE) sites such as the Hanford site, Idaho National Engineering Laboratory (INEL), Savannah River site, Oak Ridge National Laboratory (ORNL) have large quantities of sodium-nitrate based liquid wastes. At INEL alone there are 800,000 gallons. The largest quantity of these wastes is the 149 single shell tanks (SSTs) tanks at Hanford which can hold 1 million gallons each. The nitrate to ammonia ceramic (NAC) process has been developed to remove a majority of the nitrate content from the wastes.
Date: December 31, 1995
Creator: Caime, W.J. & Hoeffner, S.L.
Partner: UNT Libraries Government Documents Department