210 Matching Results

Search Results

Advanced search parameters have been applied.

Kinetic Studies and Vibrational Spectra of Disubstituted Metal Carbonyls

Description: The oxidative elimination reactions of (5-X-phen)Mo(C0)₄ (X = H, CH₃, Cl, NO₂; phen = o-phenanthroline) and (3,4,7,8-(CH₃)₄-phen)Mo(CO)₄ with mercuric chloride in acetone have been investigated. In these reactions, a carbon monoxide group is replaced by two univalent ligands, accompanied by the corresponding increase in coordination number and formal oxidation state of the central metal atom, to give products of the type, (X-phen)Mo(CO)₃(Cl)HgCl. With the exception of (3,4,7,8-(CH₃)₄-phen), the substituted o-phenanthrolines were selected so as to minimize steric differences from one substrate to another while obtaining the widest range of pKₐ of the ligand.
Date: May 1972
Creator: Jernigan, Robert Thorne
Partner: UNT Libraries

Infrared Studies of Group VIB metal Carbonyl Derivatives

Description: With three different proposals for the bonding in metal carbonyls, it was decided to look into the situation more thoroughly in order to see what other evidence was available to support or refute any of these ideas. It became obvious that a definite contradiction existed between the kinetic evidence of various metal carbonyls, and the concept of MC bond strengths as predicted by Cotton's theory.
Date: August 1971
Creator: Brown, Richard Arthur
Partner: UNT Libraries

Studies of the Mechanisms of Reactions of Binary Metal Carbonyls

Description: A kinetic study of the reactions of Group VI-B hexacarbonyls with primary amine and halide ligands was undertaken in order to determine the possible mechanisms of these reactions. As well as the expected dissociative pathway, the reactions with the primary amines were seen to proceed by a concurrent pathway which was dependent upon the ligand concentration. Since nitrogen donor ligands are expected to be poor donor ligands, the mechanism proposed was a "dissociative interchange" mechanism which should not be too dependent upon the nucleophilicity of the ligand. Comparison of the rate constants for the amines studied as well as those of the previously investigated Lewis base ligands indicated all such reactions may proceed through the same mechanism. The similarity in rate constants for the ligand-independent and ligand-dependent pathways supports this mechanism. The rate of formation of the final product was seen to be dependent upon the square of the mercuric halide concentration. Therefore, the conversion of Fe(CO)4(HgX)2 to the final product was proposed to proceed by the successive abstraction by each HgX group of two molecules of mercuric halide. These oxidative elimination reactions are related to a chemical model for the intermediate step in the reduction of dinitrogen to ammonia and their similarities and differences are discussed.
Date: May 1977
Creator: Pardue, Jerry E.
Partner: UNT Libraries

Sites of Reactivity During Ligand-Exchange Reactions in Octahedral Group VIB Metal Carbonyls

Description: The site of initial metal-carbonyl bond-breaking during ligand-exchange reactions in a series of octahedral metal carbonyls of the type (L2)M(CO)4 (M = Cr, Mo, W; L2 = diphos, phen, dipy) has been determined employing infrared spectroscopy and Fourier transform nuclear magnetic resonance spectroscopy. The results of this study reveal, for all metal carbonyl complexes of the type mentioned above, that loss of CO occurs exclusively at an axial position (cis to the bidentate ligand, I^)• The dynamic nature of the five-coordinate intermediates, such as (diphos)Mo(CO)3, (phen)M(CO)3 (M = Cr, Mo, W), and (dipy)Cr(CO)3, which are generated in solution upon CO dissociation, is reported and discussed. The results of this investigation confirm that these intermediates are fluxional on the time scale of CO-exchange process. A mechanism which describes the site of initial metal-carbonyl bond-breaking and the fluxionality of the five-coordinate intermediate during ligand-exchange reactions in the complexes (L2)M(CO)4 is proposed. A kinetic study of reactions of W(CO)6 with pseudo-halide anions (NCS-, NCO-, CN-) has been initiated. The results indicate that these reactions proceed via a bimolecular path, which involves initial attack of the pseudo-halide anion at a carbonyl carbon of W(CO)6,
Date: December 1979
Creator: Asali, Khalil Jamil
Partner: UNT Libraries


Description: The solvent dependence of the metal-to-ligand charge-transfer band pattern of tris-bipyridyl ruthenium(II) derivatives with carbonyl substituents is attributed to a reduction in the energy required for electron transfer to the dicarbonylated bipyridyl ligand with an increase in solvent polarity.
Date: July 1, 1980
Creator: Ford, W.E. & Calvin, M.
Partner: UNT Libraries Government Documents Department

Syntheses of a New C₂₂H₂₈ Cage Hydrocarbon System and 2,2- Tetramethylene-1 /4-Dibromobutane

Description: (1). An improved method for synthesizing bicyclo (2,2,1) hepta-2,5-diene-7-spiro-1'-cyclopentane (5) has been developed. Thermal reaction of compound (5) with neat iron pentacarbonyl under nitrogen atmosphere affords the corresponding cage dimer (6). Some aspects of the syntheses, spectra, and chemistry of compound (5) and (6) are discussed. (2). A structure isomer of decamethyldodecahedrane (C₃₀H₄₀), molecule (11), is expected to be synthesized via thermal reaction of iron carbonyl complexes with compound (10). An intermediate in this synthesis, 2,2- tetramethylene-1,4-dibromobutane (9) was efficiently synthesized starting from cyclopentanone. Some aspects of the syntheses, spectra, and chemistry of compound (1) to (9) will be discussed.
Date: December 1984
Creator: Wu, An-hsiang
Partner: UNT Libraries


Description: FTIR studies on FeMoO{sub 3} catalysts indicate that samples prepared by the pyrolysis method produce smaller size particles and promote more interactions with the metal catalysts. In samples prepared by coprecipitation, it is likely that iron carbides might be forming, inhibiting carbonyl and carbonate formations. In Fe-Co-MoO{sub 3} catalysts exposure to syngas seems to replace MoO{sub 3} with CO, generating cobalt carbonyl structures. Even though iron with other supports is known to be a hydrocarbon selective catalyst, with MoO{sub 3} as a support, seems to be a poor syngas conversion catalyst, while cobalt with MoO{sub 3} as a support generate carbonyl-like structures. These findings suggest that Fe-CO-MoO{sub 3} is a better syngas conversion catalyst and pyrolysis method seems to promote these formations better than coprecipiation method. Our direct liquefaction experimental results support these findings.
Date: August 16, 2001
Partner: UNT Libraries Government Documents Department

Kinetics and Mechanisms of Metal Carbonyls

Description: Pulsed laser flash photolysis with both visible and infrared detection has been applied to the study of the displacement of weakly coordinating ligands (Lw) by strongly "trapping" nucleophiles (Ls) containing either an olefinic functionality (Ls = 1-hexene, 1-decene, 1-tetradecene) or nitrogen (Ls = acetonitrile, hydrocinnamonitrile) from the photogenerated 16 electron pentacarbonylchromium (0) intermediate. 5-Chloropent-l-ene (Cl-ol), a potentially bidentate ligand, has been shown to form (ol-Cl) pentacarbonylchromium (0), in which Cl-ol is bonded to Cr via a lone pair on the chlorine, and isomerize to (Cl-ol) pentacarbonylchromium (0), in which Cl-ol is bonded to the olefinic functionality on the submillisecond time scale. This process has been studied in both the infrared and visible region employing both fluorobenzene or n-heptane as the "inert" diluent. Parallel studies employing 1-chlorobutane and 1-hexene were also evaluated and showed great similiarity with the Cl-ol system. The data supported a largely dissociative process with a possibility of a small interchange process involving the H's on the alkyl chain. Studies were also carried out for various Cr(CO)6/arene/Ls systems (arene = various alkyl or halogenated substituted benzenes). The data indicated that for both C6H5R (R=various alkyl chains) or multi-alkyl substituted arenes (i.e. o-xylene, 1,2,3-trimethylbenzene) containing an "unhindered" ring-edge, bonding to the the Cr(CO)5 moiety occurs "edge on" via a partially delocalized center of unsaturation on the ring. The data indicated that both electronic and steric properties of the arenes influence the kinetics, and that an interchange pathway takes place at least, in part, through the alkyl chains on both the arenes and "trapping" nucleophiles. Moreover, halogenated arenes bond through the lone pair on the halogen for both CI- and Br- derivatives but "edge-on" for the fluorinated arenes. Finally, in the case of arene complexes without and "unhindered" ring-edge (i.e., 1,2,3,4,5-pentamethylbenzene) bonding can occur either "edge-on" or through the ring ...
Date: May 1998
Creator: Ladogana, Santino
Partner: UNT Libraries

Metal Carbonyl-Hydrosilane Reactions and Hydrosilation Catalysis

Description: Manganese carbonyl complexes serve as hydrosilation precatalysts for selectively transforming a carbonyl group into a siloxy methylene or a fully reduced methylene group. Substrates of interest include (1) aldehydes, ketones, carboxylic acids, silyl esters, and esters, and (2) their organometallic acyl counterparts. Three relevant catalytic reactions are shown. Two types of manganese precatalysts have been reported: (a) alkyl and acyl complexes (L)(C0){sub 4}MnR [L = CO, PPh{sub 3}; R = COCH{sub 3}, COPh, CH{sub 3}] and (b) halides (CO){sub 5}MnX and [(CO){sub 4}MnX]{sub 2} (X = Br, I). The former promote hydrosilation and deoxygenation catalysis; the latter promote dehydrogenative silation of alcohols and carboxylic acids as well as hydrosilation and deoxygenation of some metallocarboxylic acid derivatives. In every case studied, these Mn precatalysts are far more reactive or selective than traditional Rh(I) precatalysts.
Date: April 14, 2001
Creator: Cutler, A. R.
Partner: UNT Libraries Government Documents Department

Investigation of organometallic reaction mechanisms with one and two dimensional vibrational spectroscopy

Description: One and two dimensional time-resolved vibrational spectroscopy has been used to investigate the elementary reactions of several prototypical organometallic complexes in room temperature solution. The electron transfer and ligand substitution reactions of photogenerated 17-electron organometallic radicals CpW(CO){sub 3} and CpFe(CO){sub 2} have been examined with one dimensional spectroscopy on the picosecond through microsecond time-scales, revealing the importance of caging effects and odd-electron intermediates in these reactions. Similarly, an investigation of the photophysics of the simple Fischer carbene complex Cr(CO){sub 5}[CMe(OMe)] showed that this class of molecule undergoes an unusual molecular rearrangement on the picosecond time-scale, briefly forming a metal-ketene complex. Although time-resolved spectroscopy has long been used for these types of photoinitiated reactions, the advent of two dimensional vibrational spectroscopy (2D-IR) opens the possibility to examine the ultrafast dynamics of molecules under thermal equilibrium conditions. Using this method, the picosecond fluxional rearrangements of the model metal carbonyl Fe(CO){sub 5} have been examined, revealing the mechanism, time-scale, and transition state of the fluxional reaction. The success of this experiment demonstrates that 2D-IR is a powerful technique to examine the thermally-driven, ultrafast rearrangements of organometallic molecules in solution.
Date: December 16, 2008
Creator: Cahoon, James Francis
Partner: UNT Libraries Government Documents Department

Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-Aperture Optics in Megajoule Class Laser Systems

Description: Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.
Date: October 27, 2010
Creator: Menapace, J A
Partner: UNT Libraries Government Documents Department

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

Description: Carbonyls from gasoline powered light-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were measured using an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery, 4-fluorobenzaldehyde for<C8 carbonyls and 6-fluoro-4-chromanone for>_C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 ? 2000 ?g/L fuel for LDVs and 1.8 - 27000 mu g/L fuel for HDDVs. Gas-phase species accounted for 81-95percent of the total carbonyls from LDVs and 86-88percent from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19percent of particulate organic carbon (POC) emissions from low-emission LDVs and 37percent of POC emissions from three-way catalyst equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9percent depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas- and particle-phase under the dilution factors of 126-584 used in the current study.
Date: December 1, 2007
Creator: Destaillats, Hugo; Jakober, Chris A.; Robert, Michael A.; Riddle, Sarah G.; Destaillats, Hugo; Charles, M. Judith et al.
Partner: UNT Libraries Government Documents Department

Kinetics and Mechanism of Reactions of Disubstituted Octahedral Metal Carbonyls with Phosphorus Donor Ligands and Germanium Tetraiodide

Description: The kinetics and mechanism of the reactions of (tmpa)W-(CO)^ and (tmen)W(CO)^ (tmpa = N,N,N',N'-tetramethy1-1,3-diaminopropane and tmen = N,N,N1,N1-tetramethylethylenediamine) with four phosphorus donor ligands (triisopropyl phosphite, triphenyl phosphite, triphenylphosphine and "constrained phosphite", 4-methyl-2,6,7-trioxa-l-phosphabicylo[2.2.2]octane) in xylene have been investigated in detail. These reactions were found to take place by the ring-opening of the bidentate ligand in a reversible step which leads to the formation of a five-coordinate intermediate of the type [(h^-tmpa)W(CO)or [(h^-tmen)W(CO). The intermediate then reacts with one molecule of phosphorus ligand, L, to form a six-coordinate intermediate, which can either expel the bidentate ligand and react with another molecule of L leading to the formation of a new disubstituted tungsten tetracarbonyl or go through a ring-reclosure step to form a seven-coordinate activated com-2 2plex or intermediate of the type [(h -tmpa)W(CO)^(L)] or [(h - tmen)W(CO)^(L)] which then regenerates the substrate through the expulstion of the L molecule. This mechanism is consistent with the observed rate behavior in these systems. For the reaction of (tmpa)W(CO)^ with the "constrained phosphite", an intermediate of the type [(h1-tmpa)W(CO)4P(OCH2)3CCH3] was isolated and identified.
Date: August 1976
Creator: Moradi-Araghi, Ahmad
Partner: UNT Libraries

A device for the determination of low concentrations of oxygen in carbonaceous materials

Description: Oxygen in carbonaceous materials is converted to carbon monoxide (CO) by pyrolyzing the material in a stream of oxygen-free helium. The CO is reacted with Ni{sup 63}, a radioactive isotope of nickel, to form nickel tetracarbanyl (Ni{sup 63}(CO){sub 4}) which is carried by the helium stream into a flow-through gas proportional counter. The quantity of Ni(CO){sub 4} is determined by the radioactivity of the gas as measured by the gas proportional counter. After exiting the flow through counter the Ni{sub 63}(CO){sub 4} is destroyed by exposing it to high temperatures. The Ni{sub 63} is retained within the apparatus while the CO is flushed from the system after being oxidized to carbon dioxide (CO{sub 2}). The detection limit is estimated to be less than 1 part per billion oxygen for a 10 mg sample.
Date: December 31, 1991
Creator: Schultz, H.
Partner: UNT Libraries Government Documents Department

Dynamic NMR studies of restricted arene rotation in the chromiu tricarbonyl thiophene and selenophene complexes

Description: This thesis contains the results of organometallic studies of thiophene and selenophene coordination in transition metal complexes. Chromium tricarbonyl complexes of thiophene, selenophene, and their alkyl-substituted derivatives were prepared and variable-temperature {sup 13}C NMR spectra of these complexes were recorded in dimethyl ether. Bandshape analyses of these spectra yielded activation parameters for restricted rotation of the thiophene and selenophene ligands in these complexes. Extended Hueckel molecular orbital calculations (EHMO) of the free thiophene and selenophene ligands and selected chromium tricarbonyl thiophene complexes were performed to better explain the activation barriers of these complexes. The structure of Cr(CO){sub 3}({eta}{sup 5}-2,5-dimethylthiophene) was established by a single crystal X-ray diffraction study.
Date: May 27, 1994
Creator: Sanger, M. J.
Partner: UNT Libraries Government Documents Department

Acceleration of Amide Bond Rotation by Encapsulation in the Hydrophobic Interior of a Water-Soluble Supramolecular Assembly

Description: The hydrophobic interior cavity of a self-assembled supramolecular assembly exploits the hydrophobic effect for the encapsulation of tertiary amides. Variable temperature 1H NMR experiments reveal that the free energy barrier for rotation around the C-N amide bond is lowered by up to 3.6 kcal/mol upon encapsulation. The hydrophobic cavity of the assembly is able to stabilize the less polar transition state of the amide rotation process. Carbon-13 labeling studies showed that the {sup 13}C NMR carbonyl resonance increases with temperature for the encapsulated amides which suggests that the assembly is able to favor a twisted for of the amide.
Date: April 8, 2008
Creator: Pluth, Michael D.; Bergman, Robert G. & Raymond, Kenneth N.
Partner: UNT Libraries Government Documents Department

Dynamics of nucleation in chemical vapor deposition

Description: We study the evolution of layer morphology during the early stages of metal chemical vapor deposition (CVD) onto Si(100) via pyrolysis of Fe(CO){sub 5} below 250{degrees}C. Scanning tunneling microscopy (STM) shows that nuclei formation is limited by precursor dissociation which occurs on terraces, not at step sites. Also, the average size of clusters formed during CVD is larger than for Fe growth by evaporation (a random deposition process). Based on STM data and Monte Carlo simulations, we conclude that the CVD-growth morphology is affected by preferential dissociation of Fe(CO){sub 5} molecules at existing Fe clusters -- an autocatalytic effect. We demonstrate that nucleation kinetics can be used to control formation of metal nanostructures on chemically tailored surfaces. Reactive sites on Si (001) are first passivated by hydrogen. H atoms are locally removed by electron stimulated desorption using electrons emitted from the STM tip. Subsequent pyrolysis of Fe(CO){sub 5} leads to selective nucleation and growth of Fe films in the areas where H has been removed.
Date: November 1, 1995
Creator: Mayer, T.M.; Adams, D.P.; Swartzentruber, B.S. & Chason, E.
Partner: UNT Libraries Government Documents Department

CNG and Diesel Transit Bus Emissions in Review

Description: Over the past three years, the California Air Resources Board (CARB), in collaboration with the University of California and other entities, has investigated the tailpipe emissions from three different latemodel, in-use heavy-duty transit buses in five different configurations. The study has focused on the measurement of regulated emissions (NOX, HC, CO, total PM), other gaseous emissions (CO2, NO2, CH4, NMHC), a number of pollutants of toxic risk significance (aromatics, carbonyls, PAHs, elements), composition (elemental and organic carbon), and the physical characterization (size-segregated number count and mass) of the particles in the exhaust aerosol. Emission samples are also tested in a modified Ames assay. The impact of oxidation catalyst control for both diesel and compressed natural gas (CNG) buses and a passive diesel particulate filter (DPF) were evaluated over multiple driving cycles (idle, 55 mph cruise, CBD, UDDS, NYBC) using a chassis dynamometer. For brevity, only CBD results are discussed in this paper and particle sizing results are omitted. The database of results is large and some findings have been reported already at various forums including last year's DEER conference. The goal of this paper is to offer an overview of the lessons learned and attempt to draw overall conclusions and interpretations based on key findings to date.
Date: August 24, 2003
Creator: Ayala, A. (a); Kado, N. (a,b); Okamoto, R. (a); Gebel, M. (a) Rieger, P. (a); Kobayashi, R. (b) & Kuzmicky, P. (b)
Partner: UNT Libraries Government Documents Department

Energies of organic compounds. Final report

Description: The objective of this research was to gain information on the energies of organic compounds and on the factors that control energies. The work involved calorimetric measurements of energy changes and theoretical studies of intramolecular interactions and molecular energies.
Date: July 1, 1995
Partner: UNT Libraries Government Documents Department

Further studies on hydration of alkynes by the PtCl4-CO catalyst

Description: Under CO atmosphere, between 80 and 120 C, a glyme solution of PtCl{sub 4} forms a carbonyl compound that promotes hydration of internal as well as terminal alkynes to give aldehyde-free ketones. The catalytic process depends strongly on the electronic and steric nature of the substrates. Part of the carbonyl functions of the catalyst can be replaced by phosphine ligands. Chiral DIOP reacts with the PtCl{sub 4}-CO compound to give a catalyst that promotes partial kinetic resolution of a racemic alkyne. Replacement of part of the CO by polystyrene-bound diphenylphosphine enables to attach the catalyst to the polymeric support. Upon entrapment of the platinum compound in a silica sol-gel matrix, it reacts as a partially recyclable catalyst. A reformulated mechanism for the PdCl{sub 4}-CO catalyzed hydration is suggested on the basis of the present study.
Date: January 18, 2002
Creator: Israelsohn, Osnat; Vollhardt, K. Peter C. & Blum, Jochanan
Partner: UNT Libraries Government Documents Department

Kinetics Studies of Substituted Tungsten Carbonyl Complexes

Description: Thermal reactions and flash photolysis are used to study the olefin bond-migration promoted by tungsten carbonyls. Substitution of piperidine (pip) by 2- allylphenyldiphenylphosphine (adpp) in the cis-(pip)(η^1- adpp)W(CO)-4 complex was investigated, and no olefin bond-migration was observed. This suggests that a vacant coordinated site adjacent to the coordinated olefin is an essential requirement for olefin bond rearrangement. The rates of olefin attack on the photogenerated coordinatively unsaturated species, cis-[(CB)(η^1-ol- P)W(CO)-4] (CB = chlorobenzene, p-ol = Ph-2P(CH-2)-3CH=CH-2; n = 1-4) were measured. Kinetics data obtained both in pure CB and in CB/cyclohexane mixtures support a dissociative mechanism in which the W-CB bond is broken in the transition state. In contrast to results observed in studies of other related systems, no olefin bond-migration is noted. This observation is attributed to P-W coordination at all stages of the reaction, which precludes formation of a reactive intermediate containing a vacant coordination site adjacent to a P-ol bond.
Date: August 1989
Creator: Wang, I-Hsiung, 1950-
Partner: UNT Libraries

Small-Chamber Measurements of Chemical-Specific Emission Factors for Drywall

Description: Imported drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. To support an investigation of those building materials by the Consumer Products Safety Commission (CPSC), Lawrence Berkeley National Laboratory (LBNL) measured chemical-specific emission factors for 30 samples of drywall materials. Emission factors are reported for 75 chemicals and 30 different drywall samples encompassing both domestic and imported stock and incorporating natural, synthetic, or mixed gypsum core material. CPSC supplied all drywall materials. First the drywall samples were isolated and conditioned in dedicated chambers, then they were transferred to small chambers where emission testing was performed. Four sampling and analysis methods were utilized to assess (1) volatile organic compounds, (2) low molecular weight carbonyls, (3) volatile sulfur compounds, and (4) reactive sulfur gases. LBNL developed a new method that combines the use of solid phase microextraction (SPME) with small emission chambers to measure the reactive sulfur gases, then extended that technique to measure the full suite of volatile sulfur compounds. The testing procedure and analysis methods are described in detail herein. Emission factors were measured under a single set of controlled environmental conditions. The results are compared graphically for each method and in detailed tables for use in estimating indoor exposure concentrations.
Date: June 1, 2010
Creator: Maddalena, Randy; Russell, Marion & Apte, Michael G.
Partner: UNT Libraries Government Documents Department