706 Matching Results

Search Results

Advanced search parameters have been applied.

Evaluation of cast carbon steel and aluminum for rack insert in MCO Mark 1A fuel basket

Description: This document evaluates the effects ofusing a cast carbon steel or aluminum instead of 3O4L stainless steel in the construction ofthe fuel rack insert for the Spent Nuclear Fuel MCO Mark IA fuel baskets. The corrosion, structural, and cost effects are examined.
Date: March 21, 1997
Creator: Graves, C. E.
Partner: UNT Libraries Government Documents Department

Development of a carburizing and quenching simulation tool: A material model for low carbon steels undergoing phase transformations

Description: An internal state variable formulation for phase transforming alloy steels is presented. We have illustrated how local transformation plasticity can be accommodated by an appropriate choice for the corresponding internal stress field acting between the phases. The state variable framework compares well with a numerical micromechanical calculation providing a discrete dependence of microscopic plasticity on volume fraction and the stress dependence attributable to a softer parent phase. The multiphase model is used to simulate the stress state of a quenched bar and show qualitative trends in the response when the transformation phenomenon is incorporated on the length scale of a global boundary value problem.
Date: June 24, 1996
Creator: Bammann, D.; Prantil, V. & Kumar, A.
Partner: UNT Libraries Government Documents Department

Effect of Nitrite/Nitrate concentrations on Corrosivity of Washed Precipitate

Description: Cyclic polarization scans were performed using A-537 carbon steel in simulated washed precipitate solutions of various nitrite and nitrate concentrations. The results of this study indicate that nitrate is an aggressive anion in washed precipitate. Furthermore, a quantitative linear log-log relationship between the minimum effective nitrite concentration and the nitrate concentration was established for washed precipitate with other ions at their average compositions.
Date: March 28, 2001
Creator: Congdon, J.W.
Partner: UNT Libraries Government Documents Department

Why Do Kraft Recovery Boiler Composite Floor Tubes Crack?

Description: Cracks were first reported in 1992 in co-extruded 304L stainless steel/SA210 Gd Al carbon steel floor tubes of North American black liquor recovery boilers. Since then, a considerable amount of information has been collected on the tube environment, crack characteristics, the stress state of the tubes, and the crack initiation and propagation mechanisms. These studies have identified both operating procedures that apparently can greatly lessen the likelihood of crack formation in the stainless steel layer and alternate materials that appear to be much more resistant to cracking than is 304L stainless.
Date: October 22, 2001
Creator: Keiser, J.R.
Partner: UNT Libraries Government Documents Department

Solid-state joining of ultrahigh carbon steels

Description: A joining study of these steels was initiated to determine the feasibility of using ultrahigh carbon steels in structural applications. The high carbon content (1.5 wt%) in these steels and the desire to maintain the superplastic microstructure limit the use of conventional arc-welding processes. We chose two solid-state joining processes: diffusion bonding and inertia friction welding. Preliminary results show that sound bonds can be obtained with tensile properties nearly equal to those of the base metal. Of three UHC steels bonded by both inertia-friction welding and diffusion- bonding processes, the one with the lowest aluminum content had the best overall properties. Diffusion bonding with a nickel interlayer showed the most promising results for the UHC steel containing 1.6 wt% aluminum. The properties of inertia-friction-welded steels can be improved by a post-weld heat treatment.
Date: April 22, 1993
Creator: Sunwoo, A.J.
Partner: UNT Libraries Government Documents Department

Investigations of Low Temperature Time Dependent Cracking

Description: The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.
Date: September 30, 2002
Creator: Van der Sluys, W A; Robitz, E S; Young, B A & Bloom, J
Partner: UNT Libraries Government Documents Department

The fate of organics from hot semiworks in CR vault

Description: The 244-CR vault contains four tanks: two 40,000-gallon carbon steel tanks and two 15,000-gallon stainless steel tanks. On occasion, the waste from 201-C Semiworks was routed through the tanks in 244-CR. This had the potential for mixing the organics from 201-C Semiworks and a residual heel in 244-CR which may be acidic. The purpose of this study is to determine if there is a possibility that a reactive waste could be present in 244-CR vault.
Date: August 23, 1999
Creator: Reynolds, D. A.
Partner: UNT Libraries Government Documents Department


Description: Due to extended low-temperature operation of the KAPL30 carbon steel thimble in the Materials Testing Reactor, a radiation damage evaluation was undertaken. Radiation damage in carbon steel may not be annealed under lowtemperature operating conditions. The data used in the evaluation are presented, and an extension of thimble life to 16 reactor cycles is recommended, subject to review if further low-temperature operation occurs. (D.E.B.)
Date: July 22, 1957
Creator: Lewis, D.M.
Partner: UNT Libraries Government Documents Department

MAG-GATE System for Molten metal Flow Control

Description: The need for improved active flow control has been recognized as part of the Steel Industry Technology Roadmap. Under TRP 9808 for the American Iron and Steel Institute and the Department of Energy, Concept Engineering Group Inc. has developed MAG-GATE{trademark}, an electromagnetic system for active molten metal flow control. Two hot steel tests were successfully conducted in 2003 at the Whemco Foundry Division, Midland, PA. Approximately 110,000 pounds of 0.2% carbon steel were poured through the device subject to electromagnetic flow control. Excellent agreement between predicted and actual flow control was found. A survey of the molten metal flow control practices at 100 continuous casters in North America was also conducted in 2003. This report summarizes the results of the development program to date. Preliminary designs are described for the next step of a beta test at an operating billet/bloom or slab caster.
Date: May 15, 2004
Creator: Nathenson, Richard D.
Partner: UNT Libraries Government Documents Department


Description: This paper reports on the electrochemical scans for the supernatant of Hanford double-shell tank (DST) 241-SY-102 and the electrochemical scans for the bottom saltcake layer for Hanford DST 241-AZ-102. It further reports on the development of electrochemical test cells adapted to both sample volume and hot cell constraints.
Date: October 13, 2006
Creator: DUNCAN, J.B. & WINDISCH, C.F.
Partner: UNT Libraries Government Documents Department


Description: A salt fog test of an iron-based amorphous metal, SAM2X5, coated Type 316L stainless steel (SS316L) cylinder was made. The cylinder was 30-inch diameter by 88-inch long, and 3/8-inch thick. One end was welded shut with a SS316L end cap before coating. The body of the cylinder and the end cap were both coated. The cylinder was coated with SAM2X5 by the HVOF thermal spray process. The coating thickness was 0.015-inch to 0.019-inch thick. The cylinder was tested in a horizontal position. Also included in the test for reference purposes were five coupons (2-inch x 2-inch x 1/8-inch) of uncoated Type 1018 carbon steel (1018CS). The test used an abbreviated form of GM 9540P. Each cycle was 6 hours in duration and the cylinder and reference samples were exposed to a total of eight cycles. The cylinder was in relatively good condition after the test. Along the body of the cylinder only two pinpoint spot sized signs of rust were seen. The 1018CS reference specimens were extensively rusted.
Date: April 23, 2007
Creator: Aprigliano, L F; Rebak, R B; Choi, J; Lian, T & Day, S D
Partner: UNT Libraries Government Documents Department

Cumalative Distribution Functions for the Relative Humidity Thresholds for the Onset of Carbon Steel Corrosion

Description: The purpose of this calculation is to process the cumulative distribution functions (CDFs) characterizing the relative humidity (RH) thresholds for the onset of carbon steel corrosion provided by expert elicitation and minimize the set of values to 200 points for use in WAPDEG.
Date: May 13, 1998
Creator: Mon, K.G.
Partner: UNT Libraries Government Documents Department


Description: The purpose of this calculation is to process the cumulative distribution functions (CDFs) characterizing the temperature threshold for the onset of corrosion provided by expert elicitation and minimize the set of values to 200 points for use in WAPDEG.
Date: May 15, 1998
Creator: Mon, K.G.
Partner: UNT Libraries Government Documents Department

Hanford double shell tank corrosion monitoring instrument tree prototype

Description: High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion.
Date: November 1, 1995
Creator: Nelson, J.L.; Edgemon, G.L. & Ohl, P.C.
Partner: UNT Libraries Government Documents Department

Corrosion control of carbon steel radioactive-liquid storage tanks

Description: As the West Valley Demonstration Project (WVDP) continues vitrification operation and begins decontamination activities, it is vital to continue to maintain the integrity of the high-level waste tanks and prevent further corrosion that may disrupt the operation. This report describes the current operational status and some corrosion concerns with corresponding control measure recommendations. 14 refs., 5 figs., 6 tabs.
Date: May 1, 1997
Creator: Chang, Ji Young
Partner: UNT Libraries Government Documents Department

Numerical simulation and experimental observations of initial friction transients

Description: Experiments were performed to better understand the sliding frictional behavior between metals under relatively high shear and normal forces. Microstructural analyses were done to estimate local near-surface stress and strain gradients. The numerical simulation of the observed frictional behavior was based on a constitutive model that uses a state variable approach.
Date: July 1, 1995
Creator: Hughes, D.A.; Weingarten, L.I. & Dawson, D.B.
Partner: UNT Libraries Government Documents Department

Laboratory and Pilot Scale Evaluation of a Permeable Reactive Barrier Technology for Use at Rocky Flats Environmental Technology Site (RFETS)

Description: Three reactive materials were evaluated to identify the optimum treatment reagent for use in a Permeable Reactive Barrier Treatment System at Rocky Flats Environmental Technology Site (RFETS). The three reactive media evaluated included high carbon steel iron filings, an iron-silica alloy in the form of a foam aggregate, and a pellicular humic acid based sorbent (Humasorb from Arctech) mixed with sand. Each material was tested in the laboratory at column scale using simulated site water. All three materials showed promise for the 903 Mound Site; however, the iron filings were determined to be the most cost effective media. In order to validate the laboratory results, the iron filings were further tested at a pilot scale (field columns) using actual site water. Pilot test results were similar to laboratory results; consequently, the iron filings were chosen for the full scale demonstration of this reactive barrier technology. Design parameters including saturated hydraulic conductivity, treatment residence time, and head loss across the media were provided to the design team in support of the final design.
Date: February 1, 1999
Creator: Dwyer, B.P. & Hankins, M.G.
Partner: UNT Libraries Government Documents Department

Mechanical behavior of ultrahigh strength ultrahigh carbon steel wire and rod

Description: Ultrahigh-carbon steels (UHCSS) can achieve very high strengths in wire or rod form. These high strengths result from the mechanical work introduced during wire and rod processing. These strengths have been observed to increase with carbon content. In wire form, tensile strengths approaching 6000 MPa are predicted for UHCS containing 1. 8%C. In this paper, we will discuss the influence of processing (including rapid transformation during wire patenting) and micros ct- ure on the mechanical behavior of UHCS wire. The tensile properties of as- extruded rods are described as a function of extrusion temperature and composition. For spheroidized steels, yield and ultimate tensile strength are a function of grain size, interparticle spacing and particle size. For pearlitic steels, yield and ultimate strength were found to be functions of colony size, carbide size and plate spacing and orientation. Alloying additions (such as C, Cr, Si, Al and Co) can influence the effect of processing on these microstructural features. For spheroidized steels, fracture was found to be a function of the size of coarse carbides and of composition.
Date: July 22, 1997
Creator: Lesuer, D.R.; Syn, C.K.; Sberby, O.D. & Whittenherger, W.D.
Partner: UNT Libraries Government Documents Department

Galvanic corrosion study of container materials using zero resistance ammeter

Description: Galvanic corrosion behavior of A 516 steel separately coupled to six different corrosion-resistant alloys was investigated in an acidic brine (pHa2.70) at 30{degree}C 60{degree}C and 80{degree}C using zero resistance ammeter technique. The corrosion-resistant alloys include Alloys 825, G-3, G-30, C-4 and C-22; and Ti Grade-12, which were coupled to A 516 steel at an anode-to- cathode area ratio of one. The galvanic current and galvanic potential were measured as a function of time at all three temperatures. Optical microscopic examination was also performed on all tested specimens to evaluate the extent of surface degradation due to galvanic coupling. The overall results are presented in this paper.
Date: November 1, 1997
Creator: Roy, A. K., LLNL
Partner: UNT Libraries Government Documents Department

Double-shell tank remaining useful life estimates

Description: The existing 28 double-shell tanks (DSTS) at Hanford are currently planned to continue operation through the year 2028 when disposal schedules show removal of waste. This schedule will place the DSTs in a service life window of 4O to 60 years depending on tank construction date and actual retirement date. This paper examines corrosion- related life-limiting conditions of DSTs and reports the results of remaining useful life models developed for estimating remaining tank life. Three models based on controllable parameters such as temperature, chemistry, and relative humidity are presented for estimates to the year in which a particular DST may receive a breach in the primary tank due to pitting in the liquid or vapor region. Pitting is believed to be the life-limiting condition for DSTs,however, the region of the most aggressive pitting (vapor space or liquid) requires further investigation. The results of the models presented suggest none of the existing DSTs should fail by through-wall pitting until well beyond scheduled retrieval in 2028. The estimates of tank breach years (the year in which a tank may be expected to breach the primary tank wall) range from 2056 for pitting corrosion in the liquid region of tank 104-AW to beyond the next millennium for several tanks in the vapor region.
Date: December 2, 1996
Creator: Anantatmula, R. P.
Partner: UNT Libraries Government Documents Department

Development of a thin steel strip casting process. Final report

Description: This is a comprehensive effort to develop direct strip casting to the point where a pilot scale program for casting carbon steel strip could be initiated. All important aspects of the technology were being investigated, however the program was terminated early due to a change in the business strategy of the primary contractor, Armco Inc. (focus to be directed at specialty steels, not low carbon steel). At termination, the project was on target on all milestones and under budget. Major part was casting of strip at the experiment casting facility. A new caster, capable of producing direct cast strip of up to 12 in. wide in heats of 1000 and 3000 lb, was used. A total of 81 1000-1200 lb heats were cast as well as one test heat of 3000 lb. Most produced strip of from 0.016 to 0.085 in. thick. Process reliability was excellent for short casting times; quality was generally poor from modern hot strip mill standards, but the practices necessary for good surface quality were identified.
Date: April 1, 1994
Creator: Williams, R.S.
Partner: UNT Libraries Government Documents Department

Ultrahigh carbon steels, Damascus steels, and superplasticity

Description: The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.
Date: April 1, 1997
Creator: Sherby, O.D. & Wadsworth, J.
Partner: UNT Libraries Government Documents Department

Corrosion protection of metallic waste packages using thermal sprayed ceramic coatings

Description: Ceramic coated carbon steel coupons were corrosion tested in water with dissolved salts to simulate exposure to evaporation concentrated groundwater in an underground nuclear repository. Metallography revealed no corrosion at the ceramic metal interface of dense coatings, even though electrical measurements demonstrated that the coatings were slightly porous. Experimental results and a model to predict corrosion rates influenced by a porous ceramic coating and coating lifetimes are presented
Date: November 1, 1998
Creator: Farmer, J C; Hopper, R W; Shell, T E & Wilfinger, K R
Partner: UNT Libraries Government Documents Department