Search Results

Advanced search parameters have been applied.

FY12 ARRA-NRAP Report – Studies to Support Risk Assessment of Geologic Carbon Sequestration

Description: This report summarizes results of research conducted during FY2012 to support the assessment of environmental risks associated with geologic carbon dioxide (CO2) sequestration and storage. Several research focus areas are ongoing as part of this project. This includes the quantification of the leachability of metals and organic compounds from representative CO2 storage reservoir and caprock materials, the fate of metals and organic compounds after release, and the development of a method to measure pH in situ under supercritical CO2 (scCO2) conditions. Metal leachability experiments were completed on 6 different rock samples in brine in equilibrium with scCO2 at representative geologic reservoir conditions. In general, the leaching of RCRA metals and other metals of concern was found to be limited and not likely to be a significant issue (at least, for the rocks tested). Metals leaching experiments were also completed on 1 rock sample with scCO2 containing oxygen at concentrations of 0, 1, 5, and 10% to simulate injection of CO2 originating from the oxy-fuel combustion process. Significant differences in the leaching behavior of certain metals were observed when oxygen is present in the CO2. These differences resulted from oxidation of sulfides, release of sulfate, ferric iron and other metals, and subsequent precipitation of iron oxides and some sulfates such as barite. Experiments to evaluate the potential for mobilization of organic compounds from representative reservoir materials and cap rock and their fate in porous media (quartz sand) have been conducted. Results with Fruitland coal and Gothic shale indicate that lighter organic compounds were more susceptible to mobilization by scCO2 compared to heavier compounds. Alkanes demonstrated very low extractability by scCO2. No significant differences were observed between the extractability of organic compounds by dry or water saturated scCO2. Reaction equilibrium appears to have been reached by 96 hours. When the scCO2 was …
Date: September 27, 2011
Creator: Cantrell, Kirk J.; Shao, Hongbo; Thompson, C. J.; Zhong, Lirong; Jung, Hun Bok & Um, Wooyong
Partner: UNT Libraries Government Documents Department

Termination Report. Supply Curves for Agricultural and Forestry Greenhouse Gas Emissions and their Use in Integrated Assessments: Methodology and Case Development

Description: OAK-B135 The results produced by this project include: (1) Development of econometrically estimated marginal abatement and associated production curves describing response of agricultural and forestry emissions/sink/offsets enhancements for use in integrated assessments. Curves were developed that reflected agricultural, and forestry production of traditional commodities, carbon and other greenhouse gas offsets and biofuels given signals of general commodity demand, and carbon and energy prices. This work was done jointly with Dr. Ronald Sands at PNNL. A paper from this is forthcoming as follows Gillig, D., B.A. McCarl, and R.D. Sands, ''Integrating Agricultural and Forestry GHG Mitigation Response into General Economy Frameworks: Developing a Family of Response Functions,'' Mitigation and Adaptation Strategies for Global Change, forthcoming, 2004. An additional effort was done involving dynamics and a second paper was prepared that is annex A to this report and is Gillig, D., and B.A. McCarl, ''Integrating Agricultural and Forestry Response to GHG Mitigation into General Economy Frameworks: Developing a Family of Response Functions using FASOM,'' 2004. (2) Integration of the non dynamic curves from (1) into in a version of the PNNL SGM integrated assessment model was done in cooperation with Dr. Ronald Sands at PNNL. The results were reported at the second DOE conference on sequestration in the paper listed just below and the abstract is in Annex B of this report. Sands, R.D., B.A. McCarl, and D. Gillig, ''Assessment of Terrestrial Carbon Sequestration Options within a United States Market for Greenhouse Gas Emissions Reductions,'' Presented at the Second Conference on Carbon Sequestration, Alexandria, VA, May 7, 2003. The results in their latest version show about half of the needed offsets by 2030 can be achieved through agriculture through a mix of sequestration and biofuel options. (3) Alternative agricultural sequestration estimates were developed in conjunction with personnel at Colorado State University using …
Date: January 7, 2004
Creator: McCarl, Bruce & Gillig, Dhazn
Partner: UNT Libraries Government Documents Department

Pathways and Mechanisms of OceanTracer Transport: Implications for Carbon Sequestration

Description: This funding enabled the following published manuscripts in which we have developed models of direct relevance to ocean carbon sequestration and of the oceanic iron cycle, its connection to the global carbon cycle, and the sensitivity of atmospheric carbon dioxide to the external source of iron. As part of this process we have developed the adjoint of the MIT ocean biogeochemistry model which has enabled us to perform rigorous and efficient sensitivity studies.
Date: November 6, 2006
Creator: Marshall, John & Follows, MIchael
Partner: UNT Libraries Government Documents Department

FINAL REPORT: An Integrated Inter-temporal Analysis of Land Use Change in Forestry and Agriculture: An Assessment of the Influence of Technological Change on Carbon Sequestration and Land Use.

Description: This project built a global land use model to examine the implications of land based carbon sequestration on land uses. The model also can be used to assess the costs of different land-based actions to reduce carbon emissions.
Date: October 30, 2008
Creator: Sohngen, Brent
Partner: UNT Libraries Government Documents Department

West Coast Regional Carbon Sequestration Partnership - Report on Geophysical Techniques for Monitoring CO2 Movement During Sequestration

Description: The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of CO{sub 2}. This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques on two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhance oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model.
Date: October 1, 2005
Creator: Gasperikova, Erika & Hoversten, G. Michael
Partner: UNT Libraries Government Documents Department

Final Technical Report-the Ecology and Genomics of co2 Fixatiion in Oceanic River Plumes

Description: Oceanic river plumes represent some of the most productive environments on Earth. As major conduits for freshwater and nutrients into the coastal ocean, their impact on water column ecosystems extend for up to a thousand km into oligotrophic oceans. Upon entry into the oceans rivers are tremendous sources of CO2 and dissolved inorganic carbon (DIC). Yet owing to increased light transmissivity from sediment deposition coupled with the influx of nutrients, dramatic CO2 drawdown occurs, and plumes rapidly become sinks for CO2. Using state-of-the-art gene expression technology, we have examined the molecular biodiversity of CO2 fixation in the Mississippi River Plume (MRP; two research cruises) and the Orinoco River Plume (ORP; one cruise). When the MRP extends far into the Gulf because of entrainment with the Loop Current, MRP production (carbon fixation) can account for up to 41% of the surface production in the Gulf of Mexico. Nearer-shore plume stations (“high plume,” salinity< 32 ppt) had tremendous CO2 drawdown that was correlated to heterokont (principally diatom) carbon fixation gene expression. The principal form of nitrogen for this production based upon 15N studies was urea, believed to be from anthropogenic origin (fertilizer) from the MRP watershed. Intermediate plume environments (salinity 34 ppt) were characterized by high levels of Synechococcuus carbon fixation that was fueled by regenerated ammonium. Non-plume stations were characterized by high light Prochlorococcus carbon fixation gene expression that was positively correlated with dissolved CO2 concentrations. Although data from the ORP cruise is still being analyzed, some similarities and striking differences were found between the ORP and MRP. High levels of heterokont carbon fixation gene expression that correlated with CO2 drawdown were observed in the high plume, yet the magnitude of this phenomenon was far below that of the MRP, most likely due to the lower levels of anthropogenic nutrient input. …
Date: June 21, 2013
Creator: Paul, John H.
Partner: UNT Libraries Government Documents Department

The Effects of Iron Complexing Ligands on the Long Term Ecosystem Response to Iron Enrichment of HNLC waters

Description: The central hypothesis of this project is that natural iron-complexing organic ligands in seawater differentially regulate iron availability to large (microplankton) and small (nano and picoplankton) class of phytoplankton and thereby strongly influence the potential carbon sequestration in High Nitrate Low Chlorophyll (HNLC) regions of the ocean. The primary project goals are to: 1) determine how different natural and synthetic Fe chelators affect Fe availability to phytoplankton species that are representative of offshore HNLC waters, 2) elucidate how the changes in absolute concentrations of these chelators affect the longer-term ecosystem response to alleviation of Fe limitation, and 3) ascertain how changes in the ligand composition affect rates of cell sinking and aggregation - representative measures of the efficiency of carbon sequestration to the deep.
Date: November 18, 2006
Creator: Wells, Mark L.; Perry, Mary Jane; Cochlan, William P. & Trick, Charles G.
Partner: UNT Libraries Government Documents Department

Developing a robust geochemical and reactive transport model to evaluate possible sources of arsenic at the CO2 sequestration natural analog site in Chimayo, New Mexico

Description: Migration of carbon dioxide (CO2) from deep storage formations into shallow drinking water aquifers is a possible system failure related to geologic CO2 sequestration. A CO2 leak may cause mineral precipitation/ dissolution reactions, changes in aqueous speciation, and alteration of pH and redox conditions leading to potential increases of trace metal concentrations above EPA National Primary Drinking Water Standards. In this study, the Chimayo site (NM) was examined for site-specific impacts of shallow groundwater interacting with CO2 from deep storage formations. Major ion and trace element chemistry for the site have been previously studied. This work focuses on arsenic (As), which is regulated by the EPA under the Safe Drinking Water Act and for which some wells in the Chimayo area have concentrations higher than the maximum contaminant level (MCL). Statistical analysis of the existing Chimayo groundwater data indicates that As is strongly correlated with trace metals U and Pb indicating that their source may be from the same deep subsurface water. Batch experiments and materials characterization, such as: X-ray diffraction (XRD), scanning electron microscopy (SEM), and synchrotron micro X-ray fluorescence (#2;-XRF), were used to identify As association with Fe-rich phases, such as clays or oxides, in the Chimayo sediments as the major factor controlling As fate in the subsurface. Batch laboratory experiments with Chimayo sediments and groundwater show that pH decreases as CO2 is introduced into the system and buffered by calcite. The introduction of CO2 causes an immediate increase in As solution concentration, which then decreases over time. A geochemical model was developed to simulate these batch experiments and successfully predicted the pH drop once CO2 was introduced into the experiment. In the model, sorption of As to illite, kaolinite and smectite through surface complexation proved to be the key reactions in simulating the drop in As concentration …
Date: January 1, 2012
Creator: Viswanathana, Hari; Daia, Zhenxue; Lopano, Christina; Keating, Elizabeth; Hakala, J. Alexandra; Scheckelc, Kirk G et al.
Partner: UNT Libraries Government Documents Department

Characterizing the production and retention of dissolved iron as Fe(II) across a natural gradient in chlorophyll concentrations in the Southern Drake Passage - Final Technical Report

Description: Recent mesoscale iron fertilization studies in the Southern Ocean (e.g. SOIREE, EisenEx, SOFeX) have demonstrated the importance of iron as a limiting factor for phytoplankton growth in these high nutrient, low-chlorophyll (HNLC) waters. Results of these experiments have demonstrated that factors which influence the biological availability of the iron supplied to phytoplankton are crucial in bloom development, longevity, and generation of carbon export flux. These findings have important implications for the future development of iron fertilization protocols to enhance carbon sequestration in high-latitude oceans. In particular, processes which lead to the mobilization and retention of iron in dissolved form in the upper ocean are important in promoting continued biological availability of iron. Such processes can include photochemical redox cycling, which leads to the formation of soluble reduced iron, Fe(II), within iron-enriched waters. Creation of effective fertilization schemes will thus require more information about Fe(II) photoproduction in Southern Ocean waters as a means to retain new iron within the euphotic zone. To contribute to our knowledge base in this area, this project was funded by DOE with a goal of characterizing the production and retention of dissolved Fe as Fe(II) in an area of the southern Drake Passage near the Shackleton Transverse Ridge, a region with a strong recurrent chlorophyll gradient which is believed to be a site of natural iron enrichment in the Southern Ocean. This area was the focus of a multidisciplinary NSF/OPP-funded investigation in February 2004 (OPP02-30443, lead PI Greg Mitchell, SIO/UCSD) to determine the influence of mesoscale circulation and iron transport with regard to the observed patterns in sea surface chlorophyll in the region near the Shackleton Transverse Ridge. A number of parameters were assessed across this gradient in order to reveal interactions between plankton community structure and iron distributions. As a co-PI in the NSF/OPP-funded project, …
Date: April 10, 2007
Creator: Barbeau, Katherine
Partner: UNT Libraries Government Documents Department

An Integrated Functional Genomics Consortium to Increase Carbon Sequestration in Poplars: Optimizing Aboveground Carbon Gain

Description: This project used gene expression patterns from two forest Free-Air CO2 Enrichment (FACE) experiments (Aspen FACE in northern Wisconsin and POPFACE in Italy) to examine ways to increase the aboveground carbon sequestration potential of poplars (Populus). The aim was to use patterns of global gene expression to identify candidate genes for increased carbon sequestration. Gene expression studies were linked to physiological measurements in order to elucidate bottlenecks in carbon acquisition in trees grown in elevated CO2 conditions. Delayed senescence allowing additional carbon uptake late in the growing season, was also examined, and expression of target genes was tested in elite P. deltoides x P. trichocarpa hybrids. In Populus euramericana, gene expression was sensitive to elevated CO2, but the response depended on the developmental age of the leaves. Most differentially expressed genes were upregulated in elevated CO2 in young leaves, while most were downregulated in elevated CO2 in semi-mature leaves. In P. deltoides x P. trichocarpa hybrids, leaf development and leaf quality traits, including leaf area, leaf shape, epidermal cell area, stomatal number, specific leaf area, and canopy senescence were sensitive to elevated CO2. Significant increases under elevated CO2 occurred for both above- and belowground growth in the F-2 generation. Three areas of the genome played a role in determining aboveground growth response to elevated CO2, with three additional areas of the genome important in determining belowground growth responses to elevated CO2. In Populus tremuloides, CO2-responsive genes in leaves were found to differ between two aspen clones that showed different growth responses, despite similarity in many physiological parameters (photosynthesis, stomatal conductance, and leaf area index). The CO2-responsive clone shunted C into pathways associated with active defense/response to stress, carbohydrate/starch biosynthesis and subsequent growth. The CO2-unresponsive clone partitioned C into pathways associated with passive defense and cell wall thickening. These results indicate …
Date: February 17, 2009
Creator: Karnosky, David F (deceased); Podila, G Krishna & Burton, Andrew J (for DF Karnosky)
Partner: UNT Libraries Government Documents Department

Final Activity Report: The Effects of Iron Complexing Ligands on the Long Term Ecosystem Response to Iron Enrichment of HNLC waters

Description: Substantial increases in the concentrations of the stronger of two Fe(III) complexing organic ligand classes measured during the mesoscale Fe enrichment studies IronEx II and SOIREE appeared to sharply curtailed Fe availability to diatoms and thus limited the efficiency of carbon sequestration to the deep. Detailed observations during IronEx II (equatorial Pacific Ocean) and SOIREE (Southern Ocean –Pacific sector) indicate that the diatoms began re-experiencing Fe stress even though dissolved Fe concentrations remained elevated in the patch. This surprising outcome likely is related to the observed increased concentrations of strong Fe(III)-complexing ligands in seawater. Preliminary findings from other studies indicate that diatoms may not readily obtain Fe from these chemical species whereas Fe bound by strong ligands appears to support growth of cyanobacteria and nanoflagellates. The difficulty in assessing the likelihood of these changes with in-situ mesoscale experiments is the extended monitoring period needed to capture the long-term trajectory of the carbon cycle. A more detailed understanding of Fe complexing ligand effects on long-term ecosystem structure and carbon cycling is essential to ascertain not only the effect of Fe enrichment on short-term carbon sequestration in the oceans, but also the potential effect of Fe enrichment in modifying ecosystem structure and trajectory.
Date: July 30, 2013
Creator: Trick, Charles Gordon
Partner: UNT Libraries Government Documents Department

NON-DESTRUCTIVE IN SITU SOIL CARBON ANALYSIS: PRINCIPLE AND RESULTS.

Description: Global warming is promoted by anthropogenic CO{sub 2} emissions into the atmosphere, while at the same time it is partially mitigated by carbon sequestration by terrestrial ecosystems. However, improvement in the understanding and monitoring of below ground carbon processes is essential for evaluating strategies for carbon sequestration including quantification of carbon stores for credits. A system for non-destructive in situ carbon monitoring in soil, based on inelastic neutron scattering (INS), is described. The system can be operated in stationary or scanning mode and measures soil to depth of approximately 30 cm. There is a good agreement between results obtained from INS and standard chemical analysis of soil cores collected from the same study site.
Date: May 5, 2003
Creator: WIELOPOLSKI, L.; MITRA, S.; HENDREY, G.; ROGERS, H.; TORBERT, A. & PRIOR, S.
Partner: UNT Libraries Government Documents Department

Long-Term, Autonomous Measurement of Atmospheric Carbon Dioxide Using an Ormosil Nanocomposite-Based Optical Sensor

Description: The goal of this project is to construct a prototype carbon dioxide sensor that can be commercialized to offer a low-cost, autonomous instrument for long-term, unattended measurements. Currently, a cost-effective CO2 sensor system is not available that can perform cross-platform measurements (ground-based or airborne platforms such as balloon and unmanned aerial vehicle (UAV)) for understanding the carbon sequestration phenomenon. The CO2 sensor would support the research objectives of DOE-sponsored programs such as AmeriFlux and the North American Carbon Program (NACP). Global energy consumption is projected to rise 60% over the next 20 years and use of oil is projected to increase by approximately 40%. The combustion of coal, oil, and natural gas has increased carbon emissions globally from 1.6 billion tons in 1950 to 6.3 billion tons in 2000. This figure is expected to reach 10 billon tons by 2020. It is important to understand the fate of this excess CO2 in the global carbon cycle. The overall goal of the project is to develop an accurate and reliable optical sensor for monitoring carbon dioxide autonomously at least for one year at a point remote from the actual CO2 release site. In Phase I of this project, InnoSense LLC (ISL) demonstrated the feasibility of an ormosil-monolith based Autonomous Sensor for Atmospheric CO2 (ASAC) device. All of the Phase I objectives were successfully met.
Date: October 11, 2005
Creator: Goswami, Kisholoy
Partner: UNT Libraries Government Documents Department

Integrating Steel Production with Mineral Carbon Sequestration

Description: The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.
Date: May 1, 2008
Creator: Lackner, Klaus; Doby, Paul; Yegulalp, Tuncel; Krevor, Samuel & Graves, Christopher
Partner: UNT Libraries Government Documents Department

FutureGen: A Brief History and Issues for Congress

Description: This report briefly summarizes the history of FutureGen, discusses why it has gained interest and support from some Members of Congress and the Administration while remaining in initial stages of development, and offers some policy considerations on barriers that challenge its further development as a model for a carbon capture and sequestration (CCS) program.
Date: April 3, 2013
Creator: Folger, Peter
Partner: UNT Libraries Government Documents Department

Carbon Capture and Sequestration: Research, Development, and Demonstration at the U.S. Department of Energy

Description: This report aims to provide a snapshot of the U.S. Department of Energy (DOE) carbon capture and sequestration (CCS) program, including its current funding levels and the budget request for FY2014, together with some discussion of the program’s achievements and prospects for success in meeting its stated goals.
Date: June 10, 2013
Creator: Folger, Peter
Partner: UNT Libraries Government Documents Department

Recovery Act Funding for DOE Carbon Capture and Sequestration (CCS) Projects

Description: This report discusses current legislation regarding the potential of carbon capture and sequestration (CCS) as a mitigation strategy for lowering global emissions of carbon dioxide (CO2). Congress has appropriated more than $7 billion since FY2008 to CCS activities at the U.S. Department of Energy (DOE).
Date: February 18, 2016
Creator: Folger, Peter
Partner: UNT Libraries Government Documents Department

Funding for Carbon Capture and Sequestration (CSS) at DOE: In Brief

Description: This report discusses current legislation regarding the potential of carbon capture and sequestration (CCS) as a mitigation strategy for lowering global emissions of carbon dioxide (CO2). Congress has appropriated more than $7 billion since FY2008 to CCS activities at the U.S. Department of Energy (DOE).
Date: April 19, 2016
Creator: Folger, Peter
Partner: UNT Libraries Government Documents Department

Carbon Capture and Sequestration (CCS)

Description: This report covers only CCS and not other types of carbon sequestration activities whereby CO2 is removed from the atmosphere and stored in vegetation, soils, or oceans. Forests and agricultural lands store carbon, and the world's oceans exchange huge amounts of CO2 from the atmosphere through natural processes.
Date: June 19, 2009
Creator: Folger, Peter
Partner: UNT Libraries Government Documents Department

Carbon Capture and Sequestration

Description: This report covers carbon capture and sequestration (CCS), but not other types of carbon sequestration activities whereby CO2 is removed from the atmosphere and stored in vegetation, soils, or oceans. Forests and agricultural lands store carbon, and the world's oceans exchange huge amounts of CO2 from the atmosphere through natural processes.
Date: February 23, 2009
Creator: Folger, Peter
Partner: UNT Libraries Government Documents Department
Back to Top of Screen