459 Matching Results

Search Results

Advanced search parameters have been applied.

Tariffs Can Be Structured to Encourage Photovoltaic Energy

Description: The solar power market is growing at a quickening pace, fueled by an array of national and local initiatives and policies aimed at improving the value proposition of customer-sited photovoltaic (PV) systems. Though these policies take many forms, they commonly include up-front capital cost rebates or ongoing production incentives, supplemented by net metering requirements to ensure that customer-sited PV systems offset the full retail rate of the customer-hosts. Somewhat less recognized is the role of retail rate design, beyond net metering, on the customer-economics of grid-connected PV. Over the life of a PV system, utility bill savings represent a substantial portion of the overall economic value received by the customer. At the same time, the design of retail electricity rates, particularly for commercial and industrial customers, can vary quite substantially. Understanding how specific differences in rate design affect the value of customer-sited PV is therefore essential to supporting the continued growth of this market.
Date: August 31, 2008
Creator: Wiser, Ryan; Mills, Andrew; Barbose, Galen & Golove, William
Partner: UNT Libraries Government Documents Department

Design of Storage Systems Using Multiple Storage Technologies in Renewable Systems

Description: Energy systems that rely on intermittent renewable sources typically use storage devices to improve their reliability. Large scale systems can be expected to cycle the storage capacity on cycles ranging from a day to a year. It can be cost effective to use several storage technologies as a system. A very efficient technology can be used for the smaller daily cycles even if it has a high capital cost. Conversely, a technology having a low efficiency but a low capital cost can be used for the larger longer period cycles. This paper presents a method for determining the optimal capacities for a set of storage technologies. It is analogous to techniques used in electric generation capacity planning that use a load duration curve along with the capital and operating costs of various generations technologies. Here we derive a function that describes throughput as a function of capacity and use it along with the capital and operating costs (including efficiencies) of the storage technologies to derive the optimal capacities.
Date: January 17, 2001
Creator: Lamont, A.
Partner: UNT Libraries Government Documents Department

Improved Magnetic Fusion Energy Economics via Massive Resistive Electromagnets

Description: Abandoning superconductors for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum conductor material operating at "room temperature" (300 K) can reduce the capital cost per unit fusion power and simplify plant operations. By increasing unit size well beyond that of present magnetic fusion energy conceptual designs using superconducting electromagnets, the recirculating power fraction needed to operate resistive electromagnets can be made as close to zero as needed for economy without requiring superconductors. Other advantages of larger fusion plant size, such as very long inductively driven pulses, may also help reduce the cost per unit fusion power.
Date: August 19, 1998
Creator: Woolley, R.D.
Partner: UNT Libraries Government Documents Department

A utility survey and market assessment on repowering in the electric power industry

Description: Section 1 of this report provides a background about the DOE High Performance Power Systems (HIPPS) program. There are two kinds of HIPPS cycles under development. One team is led by the Foster Wheeler Development Corporation, the other team is led by the United Technologies Research Center. These cycles are described. Section 2 summarizes the feedback from the survey of the repowering needs of ten electric utility companies. The survey verified that the utility company planners favor a repowering for a first-of-a-kind demonstration of a new technology rather than an all-new-site application. These planners list the major factor in considering a unit as a repowering candidate as plant age: they identify plants built between 1955 and 1965 as the most likely candidates. Other important factors include the following: the need to reduce operating costs; the need to perform major maintenance/replacement of the boiler; and the need to reduce emissions. Section 3 reports the results of the market assessment. Using the size and age preferences identified in the survey, a market assessment was conducted (with the aid of a power plant data base) to estimate the number and characteristics of US generating units which constitute the current, primary potential market for coal-based repowering. Nearly 250 units in the US meet the criteria determined to be the potential repowering market.
Date: August 1, 1996
Creator: Klara, J.M.; Weinstein, R.E. & Wherley, M.R.
Partner: UNT Libraries Government Documents Department

Assessment of capital requirements for alternative fuels infrastructure under the PNGV program

Description: This paper presents an assessment of the capital requirements of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a new Generation of Vehicles is currently investigating. The six fuels include two petroleum-based fuels (reformulated gasoline and low-sulfur diesel) and four alternative fuels (methanol, ethanol, dimethyl ether, and hydrogen). This study develops estimates of cumulative capital needs for establishing fuels production and distribution infrastructure to accommodate 3X vehicle fuel needs. Two levels of fuel volume-70,000 barrels per day and 1.6 million barrels per day-were established for meeting 3X-vehicle fuel demand. As expected, infrastructure capital needs for the high fuel demand level are much higher than for the low fuel demand level. Between fuel production infrastructure and distribution infrastructure, capital needs for the former far exceed those for the latter. Among the four alternative fuels, hydrogen bears the largest capital needs for production and distribution infrastructure.
Date: December 31, 1998
Creator: Stork, K.; Singh, M.; Wang, M. & Vyas, A.
Partner: UNT Libraries Government Documents Department

Bicriteria network design problems

Description: The authors study a general class of bicriteria network design problems. A generic problem in this class is as follows: Given an undirected graph and two minimization objectives (under different cost functions), with a budget specified on the first, find a subgraph from a given subgraph class that minimizes the second objective subject to the budget on the first. They consider three different criteria -- the total edge cost, the diameter and the maximum degree of the network. Here, they present the first polynomial-time approximation algorithms for a large class of bicriteria network design problems for the above mentioned criteria. The following general types of results are presented. First, they develop a framework for bicriteria problems and their approximations. Second, when the two criteria are the same they present a black box parametric search technique. This black box takes in as input an (approximation) algorithm for the criterion situation and generates an approximation algorithm for the bicriteria case with only a constant factor loss in the performance guarantee. Third, when the two criteria are the diameter and the total edge costs they use a cluster based approach to devise approximation algorithms. The solutions violate both the criteria by a logarithmic factor. Finally, for the class of treewidth-bounded graphs, they provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic programming. The authors show how these pseudopolynomial-time algorithms can be converted to fully polynomial-time approximation schemes using a scaling technique.
Date: November 20, 1997
Creator: Marathe, M.V.; Ravi, R.; Sundaram, R.; Ravi, S.S.; Rosenkrantz, D.J. & Hunt, H.B. III
Partner: UNT Libraries Government Documents Department

Electric power substation capital costs

Description: The displacement or deferral of substation equipment is a key benefit associated with several technologies that are being developed with the support of the US Department of Energy`s Office of Utility Technologies. This could occur, for example, as a result of installing a distributed generating resource within an electricity distribution system. The objective of this study was to develop a model for preparing preliminary estimates of substation capital costs based on rudimentary conceptual design information. The model is intended to be used by energy systems analysts who need ``ballpark`` substation cost estimates to help establish the value of advanced utility technologies that result in the deferral or displacement of substation equipment. This cost-estimating model requires only minimal inputs. More detailed cost-estimating approaches are recommended when more detailed design information is available. The model was developed by collecting and evaluating approximately 20 sets of substation design and cost data from about 10 US sources, including federal power marketing agencies and private and public electric utilities. The model is principally based on data provided by one of these sources. Estimates prepared with the model were compared with estimated and actual costs for the data sets received from the other utilities. In general, good agreement (for conceptual level estimating) was found between estimates prepared with the cost-estimating model and those prepared by the individual utilities. Thus, the model was judged to be adequate for making preliminary estimates of typical substation costs for US utilities.
Date: December 1997
Creator: Dagle, J. E. & Brown, D. R.
Partner: UNT Libraries Government Documents Department

Design Optimization and Construction of the Thyratron/PFN Based Cost Model Modulator for the NLC

Description: As design studies and various R and D efforts continue on Next Linear Collider (NLC) systems, much R and D work is being done on X-Band klystron development, and development of pulse modulators to drive these X-Band klystrons. A workshop on this subject was held at SLAC in June of 1998, and a follow-up workshop is scheduled at SLAC June 23-25, 1999. At the 1998 workshop, several avenues of R and D were proposed using solid state switching, induction LINAC principles, high voltage hard tubes, and a few more esoteric ideas. An optimized version of the conventional thyratron-PFN-pulse transformer modulator for which there is extensive operating experience is also a strong candidate for use in the NLC. Such a modulator is currently under construction for base line demonstration purposes. The performance of this ''Cost Model'' modulator will be compared to other developing technologies. Important parameters including initial capital cost, operating maintenance cost, reliability, maintainability, power efficiency, in addition to the usual operating parameters of pulse flatness, timing and pulse height jitter, etc. will be considered in the choice of a modulator design for the NLC. This paper updates the progress on this ''Cost Model'' modulator design and construction.
Date: March 15, 1999
Creator: Koontz, Roland F
Partner: UNT Libraries Government Documents Department

Efficient airflow design for cleanrooms improves business bottom lines

Description: Based on a review of airflow design factors and in-situ energy measurements in ISO Cleanliness Class-5 cleanrooms, this paper addresses the importance of energy efficiency in airflow design and opportunities of cost savings in cleanroom practices. The paper discusses design factors that can long lastingly affect cleanroom system performance, and demonstrates benefits of energy efficient cleanroom design from viewpoints of environmental control and business operations. The paper suggests that a high performance cleanroom should not only be effective in contamination control, but also be efficient in energy and environmental performance. The paper also suggests that energy efficient design practice stands to bring in immediate capital cost savings and operation cost savings, and should be regarded by management as a strategy to improve business bottom lines.
Date: January 5, 2003
Creator: Xu, Tengfang
Partner: UNT Libraries Government Documents Department

Analysis of automated highway system risks and uncertainties. Volume 5

Description: This volume describes a risk analysis performed to help identify important Automated Highway System (AHS) deployment uncertainties and quantify their effect on costs and benefits for a range of AHS deployment scenarios. The analysis identified a suite of key factors affecting vehicle and roadway costs, capacities and market penetrations for alternative AHS deployment scenarios. A systematic protocol was utilized for obtaining expert judgments of key factor uncertainties in the form of subjective probability percentile assessments. Based on these assessments, probability distributions on vehicle and roadway costs, capacity and market penetration were developed for the different scenarios. The cost/benefit risk methodology and analysis provide insights by showing how uncertainties in key factors translate into uncertainties in summary cost/benefit indices.
Date: October 1994
Creator: Sicherman, A.
Partner: UNT Libraries Government Documents Department

Transferring PACE Assessments Upon Home Sale

Description: A significant barrier to investing in renewable energy and comprehensive energy efficiency improvements to homes across the country is the initial capital cost. Property Assessed Clean Energy (PACE) financing is one of several new financial models broadening access to clean energy by addressing this upfront cost issue. Recently, the White House cited PACE programs as an important element of its 'Recovery through Retrofit' plan. The residential PACE model involves the creation of a special clean energy financing district that homeowners elect to opt into. Once opted in, the local government (usually at the city or county level) finances the upfront investment of the renewable energy installation and/or energy efficiency improvements. A special lien is attached to the property and the assessment is paid back as a line item on the property tax bill. As of April 2010, 17 states have passed legislation to allow their local governments to create PACE programs, two already have the authority to set up PACE programs, and over 10 additional states are actively developing enabling legislation. This policy brief analyzes one of the advantages of PACE, which is the transferability of the special assessment from one homeowner to the next when the home is sold. This analysis focuses on the potential for the outstanding lien to impact the sales negotiation process, rather than the legal nature of the lien transfer itself. The goal of this paper is to consider what implications a PACE lien may have on the home sales negotiation process so that it can be addressed upfront rather than risk a future backlash to PACE programs. If PACE programs do expand at a rapid rate, the chances are high that there will be other cases where prospective buyers uses PACE liens to negotiate lower home prices or require repayment of the lien as ...
Date: April 12, 2010
Creator: National Renewable Energy Laboratory (U.S.)
Partner: UNT Libraries Government Documents Department

Emerging Energy-Efficient Technologies for Industry

Description: U.S. industry consumes approximately 37 percent of thenation's energy to produce 24 percent of the nation's GDP. Increasingly,society is confronted with the challenge of moving toward a cleaner, moresustainable path of production and consumption, while increasing globalcompetitiveness. Technology is essential in achieving these challenges.We report on a recent analysis of emerging energy-efficient technologiesfor industry, focusing on over 50 selected technologies. The technologiesare characterized with respect to energy efficiency, economics andenvironmental performance. This paper provides an overview of theresults, demonstrating that we are not running out of technologies toimprove energy efficiency, economic and environmental performance, andneither will we in the future. The study shows that many of thetechnologies have important non-energy benefits, ranging from reducedenvironmental impact to improved productivity, and reduced capital costscompared to current technologies.
Date: May 5, 2005
Creator: Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliot, Neal; Shipley, Anna et al.
Partner: UNT Libraries Government Documents Department

The Cost of Superconducting Magnets as a Function of Stored Energy and Design Magnetic Induction Times the Field Volume

Description: By various theorems one can relate the capital cost of superconducting magnets to the magnetic energy stored within that magnet. This is particularly true for magnet where the cost is dominated by the structure needed to carry the magnetic forces. One can also relate the cost of the magnet to the product of the magnetic induction and the field volume. The relationship used to estimate the cost the magnet is a function of the type of magnet it is. This paper updates the cost functions given in two papers that were published in the early 1990 s. The costs (escalated to 2007 dollars) of large numbers of LTS magnets are plotted against stored energy and magnetic field time field volume. Escalated costs for magnets built since the early 1990 s are added to the plots.
Date: August 27, 2007
Creator: Green, Mike; Green, M.A. & Strauss, B.P.
Partner: UNT Libraries Government Documents Department

Modeling and experimental results for condensing supercritical CO2 power cycles.

Description: This Sandia supported research project evaluated the potential improvement that 'condensing' supercritical carbon dioxide (S-CO{sub 2}) power cycles can have on the efficiency of Light Water Reactors (LWR). The analytical portion of research project identified that a S-CO{sub 2} 'condensing' re-compression power cycle with multiple stages of reheat can increase LWR power conversion efficiency from 33-34% to 37-39%. The experimental portion of the project used Sandia's S-CO{sub 2} research loop to show that the as designed radial compressor could 'pump' liquid CO{sub 2} and that the gas-cooler's could 'condense' CO{sub 2} even though both of these S-CO{sub 2} components were designed to operate on vapor phase S-CO{sub 2} near the critical point. There is potentially very high value to this research as it opens the possibility of increasing LWR power cycle efficiency, above the 33-34% range, while lowering the capital cost of the power plant because of the small size of the S-CO{sub 2} power system. In addition it provides a way to incrementally build advanced LWRs that are optimally designed to couple to S-CO{sub 2} power conversion systems to increase the power cycle efficiency to near 40%.
Date: January 1, 2011
Creator: Wright, Steven Alan; Conboy, Thomas M.; Radel, Ross F. & Rochau, Gary Eugene
Partner: UNT Libraries Government Documents Department

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

Description: On December 17, 2008, the reference-case projections from Annual Energy Outlook 2009 (AEO 2009) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof), differences in capital costs and O&M expenses, or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired or nuclear generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers; and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables ...
Date: January 28, 2009
Creator: Bolinger, Mark & Wiser, Ryan
Partner: UNT Libraries Government Documents Department

Effects of Interstage Cooling on Brayton Cycle Efficiency

Description: The US Department of Energy is investigating the use of high-temperature gas-cooled reactors (HTGR) [Oh,2005] to produce electricity and hydrogen. In anticipation of the design, development and procurement of an advanced power conversion system for HTGR, this study was initiated to identify the major design and technology options and their tradeoffs in the evaluation of power conversion system (PCS) options to support future research and procurement decisions. These PCS technology options affect cycle efficiency, capital cost, system reliability and maintainability and technical risk, and therefore the cost of electricity from Generation IV systems. In this study, we investigated the effect of interstage cooling in the PCS and present some results.
Date: June 1, 2006
Creator: Oh, Chang; Barner, Robert & Pickard, Paul
Partner: UNT Libraries Government Documents Department

Low-cost exterior insulation process and structure

Description: The invention relates to a low-cost process for insulating walls comprising: (a) stacking bags filled with insulating material next to the exterior surface of a wall until the wall is covered, the stack of bags thus formed having fasteners to attach to a wire mesh (e.g., straps looped between the bags and fastened to the wall); (b) stretching a wire mesh (e.g., chicken wire or stucco netting) over the stack of bags, covering the side of the bags which is not adjacent to the wall; (c) fastening the wire mesh to stationary objects; (d) attaching the wire mesh to said fasteners on said stack of bags; and (e) applying a cemetitious material (e.g., stucco) to the wire mesh and allowing it to harden. Stacking the bags against the wall is preferably preceded by laying a base on the ground at the foot of the wall using a material such as cement or crushed stone wrapped in a non-woven fabric (e.g., geosynthetic felt). It is also preferred to erect stationary corner posts at the ends of the wall to be insulated, the top ends of the posts being tied to each other and/or tied or otherwise anchored to the wall. The invention also includes the structure made by this process. The structure comprises a stack of bags of insulating material next to the exterior wall of a building, said stack of bags of insulating material being attached to said wall and having a covering of cementitious material on the side not adjacent to said wall.
Date: December 1997
Creator: Vohra, Arun
Partner: UNT Libraries Government Documents Department

National Biomedical Tracer Facility (NBTF). Project definition study: Phase I

Description: This report describes a five-year plan for the construction and commissioning of a reliable and versatile NBTF facility for the production of high-quality, high-yield radioisotopes for research, biomedical, and industrial applications. The report is organized in nine sections providing, in consecutive order, responses to the nine questions posed by the U.S. Department of Energy in its solicitation for the NBTF Project Definition Study. In order to preserve direct correspondence (e.g., Sec. 3 = 3rd item), this Introduction is numbered {open_quotes}0.{close_quotes} Accelerator and facility designs are covered in Section 1 (Accelerator Design) and Section 2 (Facility Design). Preliminary estimates of capital costs are detailed in Section 3 (Design and Construction Costs). Full licensing requirements, including federal, state, and local ordinances, are discussed in Section 4 (Permits). A plan for the management of hazardous materials to be generated by NBTF is presented in Section 5 (Waste Management). An evaluation of NBTF`s economic viability and its potential market impact is detailed in Section 6(Business Plan), and is complemented by the plans in Section 7 (Operating Plan) and Section 8 (Radioisotope Plan). Finally, a plan for NBTF`s research, education, and outreach programs is presented in Section 9 (Research and Education Programs).
Date: February 15, 1995
Creator: Lagunas-Solar, M.C.
Partner: UNT Libraries Government Documents Department

Integrating renewable energy technologies in the electric supply industry: A risk management approach

Description: Regulatory and technical forces are causing electric utilities to move from a natural monopoly to a more competitive environment. Associated with this movement is an increasing concern about how to manage the risks associated with the electric supply business. One approach to managing risks is to purchase financial instruments such as options and futures contracts. Another approach is to own physical assets that have low risk attributes or characteristics. This research evaluates how investments in renewable energy technologies can mitigate risks in the electric supply industry. It identifies risks that are known to be of concern to utilities and other power producers. These risks include uncertainty in fuel prices, demand, environmental regulations, capital cost, supply, and market structure. The research then determines how investments in renewables can mitigate these risks. Methods are developed to calculate the value of renewables in terms of their attributes of fuel costs, environmental costs, lead-time, modularity, availability, initial capital costs, and investment reversibility. Examples illustrate how to apply the methods.
Date: July 1, 1997
Creator: Hoff, T.E.
Partner: UNT Libraries Government Documents Department

The design, construction, and monitoring of photovoltaic power system and solar thermal system on the Georgia Institute of Technology Aquatic Center. Volume 1

Description: This is a report on the feasibility study, design, and construction of a PV and solar thermal system for the Georgia Tech Aquatic Center. The topics of the report include a discussion of site selection and system selection, funding, design alternatives, PV module selection, final design, and project costs. Included are appendices describing the solar thermal system, the SAC entrance canopy PV mockup, and the PV feasibility study.
Date: December 31, 1996
Creator: Long, R.C.
Partner: UNT Libraries Government Documents Department

Cost analysis of NOx control alternatives for stationary gas turbines

Description: The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. Factors that are contributing to this growth include advances in turbine technology, operating and siting flexibility and low capital cost. Restructuring of the electric utility industry will provide new opportunities for on-site generation. In a competitive market, it maybe more cost effective to install small distributed generation units (like gas turbines) within the grid rather than constructing large power plants in remote locations with extensive transmission and distribution systems. For the customer, on-site generation will provide added reliability and leverage over the cost of purchased power One of the key issues that is addressed in virtually every gas turbine application is emissions, particularly NO{sub x} emissions. Decades of research and development have significantly reduced the NO{sub x} levels emitted from gas turbines from uncontrolled levels. Emission control technologies are continuing to evolve with older technologies being gradually phased-out while new technologies are being developed and commercialized. The objective of this study is to determine and compare the cost of NO{sub x} control technologies for three size ranges of stationary gas turbines: 5 MW, 25 MW and 150 MW. The purpose of the comparison is to evaluate the cost effectiveness and impact of each control technology as a function of turbine size. The NO{sub x} control technologies evaluated in this study include: Lean premix combustion, also known as dry low NO{sub x} (DLN) combustion; Catalytic combustion; Water/steam injection; Selective catalytic reduction (SCR)--low temperature, conventional, high temperature; and SCONO{sub x}{trademark}.
Date: November 5, 1999
Creator: Major, Bill
Partner: UNT Libraries Government Documents Department


Description: The objective of this project was to develop a membrane process for the denitrogenation of natural gas. Large proven reserves in the Lower-48 states cannot be produced because of the presence of nitrogen. To exploit these reserves, cost-effective, simple technology able to reduce the nitrogen content of the gas to 4-5% is required. Technology applicable to treatment of small gas streams (below 10 MMscfd) is particularly needed. In this project membranes that selectively permeate methane and reject nitrogen in the gas were developed. Preliminary calculations show that a membrane with a methane/nitrogen selectivity of 3 to 5 is required to make the process economically viable. A number of polymer materials likely to have the required selectivities were evaluated as composite membranes. Polyacetylenes such as poly(1-trimethylsilyl-1-propyne) [PTMSP] and poly(4-methyl-2-pentyne) [PMP] had high selectivities and fluxes, but membranes prepared from these polymers were not stable, showing decreasing flux and selectivity during tests lasting only a few hours. Parel, a poly(propylene oxide allyl glycidyl ether) had a selectivity of 3 at ambient temperatures and 4 or more at temperatures of {minus}20 C. However, Parel is no longer commercially available, and we were unable to find an equivalent material in the time available. Therefore, most of our experimental work focused on silicone rubber membranes, which have a selectivity of 2.5 at ambient temperatures, increasing to 3-4 at low temperatures. Silicone rubber composite membranes were evaluated in bench-scale module tests and with commercial-scale, 4-inch-diameter modules in a small pilot plant. Over six days of continuous operation at a feed gas temperature of {minus}5 to {minus}10 C, the membrane maintained a methane/nitrogen selectivity of about 3.3. Based on the pilot plant performance data, an analysis of the economic potential of the process was prepared. We conclude that a stand-alone membrane process is the lowest-cost technology for ...
Date: December 31, 1999
Creator: Lokhandwala, K.A.; Ringer, M.B.; Su, T.T.; He, Z.; Pinnau, I.; Wijmans, J.G. et al.
Partner: UNT Libraries Government Documents Department

Maglift Monorail

Description: In the 1990s, significant experience has been gained with high-speed passenger rail technologies. On the one hand, high speed versions of conventional-configuration trains, such as the French TGV, have proven themselves in service; on the other hand, magnetic levitation (maglev) trains such as the German Transrapid, which some expected to supplant conventional trains in some high speed applications, have not yet proven themselves and face a problematic future. This is because of maglev's high capital cost, the magnetic drag which it introduces, and the high development risks associated with this complex technology. This paper examines a new form of high-speed train expected to be capable of speeds of 300 mph, the Maglift Monorail. The Maglift Monorail was developed by simplifying and improving two well-understood technologies--wheelsets and LIMs--and then integrating them. The solution is a vehicle with flangeless wheels mounted in two axes, powered by a high-efficiency and light-weight LIM, positioned to give magnetic lift (maglift), i.e., electromagnetic force in the vertical direction which reduces the vehicle weight on the suspension, and thereby reduces static and rolling drag. Maglift can be considered a form of maglev as it uses the same electromagnetic forces to lift and propel the vehicle. This solution is presented in a Spanish-designed monorail system which has a unique suspension designed to minimize friction while giving great stability and turning capability. This monorail vehicle is propelled by the Seraphim motor (Segmented Rail Phased Induction Motor) which virtually eliminates magnetic drag and provides significant maglift. The Maglift Monorail achieves lower operating costs and a greater overall reduction in drag than conventional noncontact maglev does, and it does so without incurring maglev's high capital costs or its technology development risks.
Date: June 10, 1999
Creator: Hopkins, Tom; Kelley, Bruce; Marder, Barry; Silva, Julio Pinto & Turman, Bob
Partner: UNT Libraries Government Documents Department