570 Matching Results

Search Results

Advanced search parameters have been applied.

A Survey of the Rates and Products of Short-Term Photosynthesis inPlants of 9 Phyla

Description: The conclusions of this paper are: (1) Short-term photosynthetic experiments using C{sup 14}O{sub 2} and paper chromatography were performed with 27 different plants representing nine phyla: Schizophyta (Schizophyceae), Euglenophyta, Chlorophyta, Charophyta, Chrysophyta, Rhodophyta, Bryophyta, Pteridophyta, and Spermatophyta. (2) There is a remarkable uniformity in the types of ethanol-soluble compounds which became radioactive in the entire group of plants used. The amounts of the different compounds varied considerably percentage-wise among the various plants as would be expected because of their inherent metabolic differences and the variations in their physiological states induced by experimental conditions. (3) Sucrose became radioactive in very different amounts in two major groupings of plants: (a) those containing only photosynthetic tissue and (b) those containing non-photosynthetic tissue as well. The amount of radioactive sucrose in the former group was much lower than that in the latter. (4) An unidentified compound became radioactive in appreciable amounts in two of the blue-green algae, but was radioactive in very small amounts or not visible at all on the chromatograms of all other plants.
Date: May 1, 1954
Creator: Calvin, M.; Norris, R.E. & Norris, Louisa
Partner: UNT Libraries Government Documents Department

Combustion Byproducts Recycling Consortium

Description: This paper discusses the roles and responsibilities of each position within the Combustion Byproducts Recyclcing Consortium.
Date: August 31, 2008
Creator: Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; chugh, Y. Paul & Hower, James
Partner: UNT Libraries Government Documents Department

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

Description: This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.
Date: June 1, 1999
Creator: James T. Cobb, Jr.; Neufeld, Ronald D. & Agostini, Jana
Partner: UNT Libraries Government Documents Department

Development of an advanced, continuous mild gasification process for the production of co-products

Description: The objective of this project is to develop a continuous mild gasification process to convert highly caking coals to coal liquids, char and coke for near term commercial application. Task 3, Bench-Scale Char Upgrading Study, has been underway since September 1989. In char upgrading studies, ``green`` uncured char briquettes have been prepared and calcined in 20-pound batches to evaluate the effects of char, binders, and heating conditions on final coke properties. A total of 150. formulations have been tested thus far in this work. Work on Task 4, Process Development Unit (PDU) Mild Gasification Study, has been in progress since February 1991, with the completion of a Continuous Mild Gasification Unit (CMGU) with a design rate of 1000 lb./hr. Since start-up of the CMGU, there have been 72 runs with a variety of operating conditions and coal types.
Date: November 1, 1992
Creator: Wolfe, R. A.; Wright, R. E.; Im, C. J.; Henkelman, M. R. & O`Neal, G. W.
Partner: UNT Libraries Government Documents Department

Shale oil value enhancement research: Separation characterization of shale oil

Description: The overall objective is to develop a new technology for manufacturing valuable marketable products form shale oil. Phase-I objectives are to identify desirable components in shale oil, develop separations techniques for those components, identify market needs and to identify plausible products manufacturable from raw shale oil to meet those needs. Another objective is to conduct preliminary process modeling and economic analysis of selected process sequences and product slates, including an estimation of process, costs and profitability. The end objective of Phase-I is to propose technically and economically attractive separations and conversion processes for small-scale piloting in the optional Phase-II. Optional Phase-II activities include the pilot-scale test of the Shale Oil Native Products Extraction (SO-NPX) technology and to produce specification products. Specific objectives are to develop the engineering data on separations processing, particularly those in which mixtures behave non-ideally, and to develop the conversion processes for finishing the separations concentrates into specification products.The desired process scenarios will be developed and economic analysis will be performed on the process scenarios. As a result of the process simulation and economic analysis tasks, a product manufacture and test marketing program shall be recommended for the optional Phase-III. Optional Phase-III activities are to manufacture specification products and to test market those products in order to ensure market acceptability. The activities involve the assembling of the technical, market and economic data needed for venture evaluation. The end objective is to develop the private sector interest to carry this technology forward toward commercialization.
Date: December 31, 1993
Creator: Bunger, J. W.
Partner: UNT Libraries Government Documents Department

Upgrading mild gasification liquids to produce electrode binder pitch. Technical report, December 1, 1992--February 28, 1993

Description: The objective of this program is to investigate the production of electrode binder pitch from mild gasification liquids. The IGT MILDGAS process pyrolyzes coal in a 1000{degree}--1500{degree}F (538{degree}--816{degree}C) fluidized/entrained bed to produce solid, gas, and liquid co-products. With Illinois coal, the 750{degree} F+ (400{degree}C+) distillation residue (crude pitch) comprises 40--70% of the MILDGAS liquids, representing up to 20 wt % of feed coal. The largest market for pitch made from coal liquids is the aluminum industry, which uses it to make carbon anodes for electrolytic furnaces. Traditionally, binder pitches have only been made from high-temperature coke-oven tars. In this project, crude pitch from the DOE-sponsored MILDGAS process research program is being modified by a flash thermocracking technique to achieve specifications typical of a binder pitch. A pitch thermocracking unit has been constructed for operation at 1200{degree}--1800{degree}F (650{degree}--982{degree}C). Atomization of the pitch at the thermocracker inlet is being examined as a method of optimizing the particle size of polymerized pitch components. With the production of cracked pitch samples, test electrodes will be fabricated using the best performing pitch samples and petroleum coke or calcined pitch coke filler.
Date: May 1, 1993
Creator: Knight, R. A. & Banerjee, D.
Partner: UNT Libraries Government Documents Department

The development of an integrated multistaged fluid bed retorting process. Annual report, October 1, 1992--September 30, 1993

Description: This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II) during the period of October 1, 1992 through September 30, 1993 under Cooperative Agreement No. DE-FC21-90MC27286 with the Morgantown Energy Technology Center, US Department of Energy. The KENTORT II process includes integral fluidized bed zones for pyrolysis, gasification, and combustion of the oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The PDU was assembled, instrumented and tested during this fiscal year. Along with the major activity of commissioning the 50-lb/hr retort, work was also completed in other areas. Basic studies of the cracking and coking kinetics of model compounds in a fixed bed reactor were continued. Additionally, as part of the effort to investigate niche market applications for KENTORT II-derived products, a study of the synthesis of carbon fibers from the heavy fraction of KENTORT II shale oil was initiated.
Date: November 1, 1993
Creator: Carter, S.; Taulbee, D.; Vego, A.; Stehn, J.; Fei, Y.; Robl, T. et al.
Partner: UNT Libraries Government Documents Department

Investigation of a sulfur reduction technique for mild gasification char. Final technical report, September 1, 1992--August 31, 1993

Description: The objective of this program is to investigate the desulfurization of mild gasification char using H{sub 2}:CH{sub 4} mixtures. Mild gasification of coal produces char, liquids, and gases at 1000{degrees}--1500{degrees}F and near-ambient pressure. Char, comprising 60--70% of the product, can be used to make high-value form coke for steel making and foundries. A sulfur content below 1 wt% is desirable, and char from high-sulfur Illinois coals must be upgraded to meet this criterion. In the first year of the program, Illinois No. 6 chars were treated in a batch fluidized bed with H{sub 2}:CH{sub 4} blends containing 9--24 vol% CH{sub 4} at 1100{degrees}--1600{degrees}F and 50--200 psig. Sulfur removals up to 92.5 wt% were obtained, and the char desulfurization susceptibility was related to porosity, density, and carbon crystallite size. During the second year, the relationships among mild gasification parameters, char properties, char desulfurization susceptibility, and form coke properties were studied. Acid washing of coal to remove Ca and Fe was explored for its effect on subsequent sulfur removal, and secondary desulfurization of form coke produced from the desulfurized chars was studied. Desulfurization tests of entrained and fluidized-bed reactor chars from IBC-105 coal were completed. Acid-washing of the coal prior to mild gasification or the char prior to desulfurization increased its susceptibility to desulfurization, with sulfur content reduced to as low as 0.10 wt % dry char. Fluidized-bed chars were easier to desulfurize than entrained chars, with or without acid-washing. Form coke briquettes were prepared from selected chars and mild gasification pitch binder, and then carbonized under both N{sub 2} and H{sub 2}:CH{sub 4} atmospheres. carbonization in H{sub 2}:CH{sub 4} removed additional sulfur from the form coke. Adequate tensile strength (837 psi) was achieved in briquettes with 1.2 wt% sulfur made from desulfurized char.
Date: December 31, 1993
Creator: Knight, R. A.
Partner: UNT Libraries Government Documents Department

Advanced Multi-Product Coal Utilization By-Product Processing Plant

Description: The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. A mobile demonstration unit has been designed and constructed for field demonstration. The demonstration unit was hauled to the test site on trailers that were place on a test pad located adjacent to the ash pond and re-assembled. The continuous test unit will be operated at the Ghent site and will evaluate three processing configurations while producing sufficient products to facilitate thorough product testing. The test unit incorporates all of the unit processes that will be used in the commercial design and is self sufficient with respect to water, electricity and processing capabilities. Representative feed ash for the operation of the filed testing unit was excavated from a location within the lower ash pond determined from coring activities. Approximately 150 tons of ash was excavated and pre-screened to remove +3/8 inch material that could cause plugging problems during operation of the demonstration unit.
Date: September 1, 2005
Creator: Robl, Thomas & Groppo, John
Partner: UNT Libraries Government Documents Department

Structure Effects on the Energetics of the Electrochemical Reduction of CO2 by Copper Surfaces

Description: Polycrystalline copper electrocatalysts have been experimentally shown to be capable of reducing CO{sub 2} into CH{sub 4} and C{sub 2}H{sub 4} with relatively high selectivity, and a mechanism has recently been proposed for this reduction on the fcc(211) surface of copper, which was assumed to be the most active facet. In the current work, we use computational methods to explore the effects of the nanostructure of the copper surface and compare the effects of the fcc(111), fcc(100) and fcc(211) facets of copper on the energetics of the electroreduction of CO{sub 2}. The calculations performed in this study generally show that the intermediates in CO{sub 2} reduction are most stabilized by the (211) facet, followed by the (100) facet, with the (111) surface binding the adsorbates most weakly. This leads to the prediction that the (211) facet is the most active surface among the three in producing CH{sub 4} from CO{sub 2}, as well as the by-products H{sub 2} and CO. HCOOH production may be mildly enhanced on the more close-packed surfaces ((111) and (100)) as compared to the (211) facet, due to a change in mechanism from a carboxyl intermediate to a formate intermediate. The results are compared to experimental data on these same surfaces; the predicted trends in voltage requirements are consistent between the experimental and computational data.
Date: August 19, 2011
Creator: Durand, William
Partner: UNT Libraries Government Documents Department

Leaching of Phase II Mercury Control Technology By-Products

Description: The U.S. EPA has issued a final regulation for control of mercury from coal-fired power plants. An NETL research, development and demonstration program under DOE/Fossil Energy Innovations for Existing Plants is directed toward the improvement of the performance and economics of mercury control from coal-fired plants. The current Phase II of the RD&D program emphasizes the evaluation of performance and cost of control technologies through slip-stream and full scale field testing while continuing the development of novel concepts. One of the concerns of the NETL program is the fate of the captured flue gas mercury which is transferred to the condensed phase by-product stream. These adulterated by-products, both ashes and FGD material, represent the greatest challenge to the DOE goal of increased utilization of by-products. The degree of stability of capture by-products and their potential for release of mercury can have a large economic impact on material sales or the approach to disposal. One of the considerations for mercury control technology is the potential trade-off between effective but temporary mercury capture and less effective but more permanent sequestration. As part of a greater characterization effort of Phase II facility baseline and control technology sample pairs, NETL in-house laboratories have performed aqueous leaching procedures on a select subset of the available sample pairs. This report describes batch leaching results for mercury, arsenic, and selenium.
Date: July 1, 2007
Creator: Hesbach, P.A. & Kachur, E.K.
Partner: UNT Libraries Government Documents Department

Alternative Fuels and Chemicals from Synthesis Gas

Description: The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.
Date: January 2, 2003
Creator: Tijrn, Peter
Partner: UNT Libraries Government Documents Department

ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

Description: The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.
Date: February 3, 2003
Creator: Tijrn, Peter
Partner: UNT Libraries Government Documents Department

Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments

Description: To move beyond dedicated links and networks, quantum communications signals must be integrated into networks carrying classical optical channels at power levels many orders of magnitude higher than the quantum signals themselves. We demonstrate transmission of a 1550-nm quantum channel with up to two simultaneous 200-GHz spaced classical telecom channels, using ROADM (reconfigurable optical <1dd drop multiplexer) technology for multiplexing and routing quantum and classical signals. The quantum channel is used to perform quantum key distribution (QKD) in the presence of noise generated as a by-product of the co-propagation of classical channels. We demonstrate that the dominant noise mechanism can arise from either four-wave mixing or spontaneous Raman scattering, depending on the optical path characteristics as well <1S the classical channel parameters. We quantity these impairments and discuss mitigation strategies.
Date: January 1, 2008
Creator: Rosenberg, Danna; Peterson, Charles G; Dallmann, Nicholas; Hughes, Richard J; Mccabe, Kevin P; Nordholt, Jane E et al.
Partner: UNT Libraries Government Documents Department

Advanced Multi-Product Coal Utilization By-Product Processing Plant

Description: The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station.
Date: September 30, 2006
Creator: Groppo, John & Robl, Thomas
Partner: UNT Libraries Government Documents Department

Advanced Multi-Product Coal Utilization By-Product Processing Plant

Description: The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. Phase 1 was completed successfully, but the project did not continue on to Phase 2 due to withdrawal of CEMEX from the project. Attempts at replacing CEMEX were not successful. Problematic to the continuation of the project was its location in the Ohio Valley which is oversupplied and has low prices for fly ash and the change in CEMEX priorities due to merger and acquisitions. Thus, CAER concurred with the DOE to conclude the project at the end of Budget Period 1, March 31, 2007.
Date: March 31, 2007
Creator: Robl, Thomas & Groppo, John
Partner: UNT Libraries Government Documents Department

Advanced Multi-Product Coal Utilization By-Product Processing Plant

Description: The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utility's 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station. The secondary classification testing was concluded using a continuous demonstration-scale lamella classifier that was operated at a feed rate of 0.3 to 1.5 tons/hr. Feed to the secondary classifier was generated by operating the primary classifier at the conditions shown to be effective previously. Samples were taken while the secondary classifier was operated under a variety of conditions in order to determine the range of conditions where the unit could be efficiently operated. A Topical Report was prepared and included all of the pertinent processing data generated during Budget Period 1 of the project as well as results of beneficiated ash product evaluations in mortar and concrete, schematic plant designs with mass and water balances for the four flowsheets tested with equipment lists, capital and installation costs, expected product outputs and equipment justifications. A proposal for continuation of the project to Budget Period 2 was also prepared and submitted, with the exception of a Letter of Commitment from Cemex. The proposal is currently under internal review with Cemex and a decision is expected by the end of September, 2006.
Date: June 30, 2006
Creator: Groppo, John & Robl, Thomas
Partner: UNT Libraries Government Documents Department

By-Products from Saline Water Conversion Plants: A Feasibility Study

Description: Report issued by the Office of Saline Water over studies conducted on by-products of saline water conversion plants. As stated in the introduction, "the objective of the survey has been to determine whether recovery of salable by-products from minerals present in saline waters offers a practical route to reducing the overall cost of converting these saline feeds to fresh water, and to delineate areas for further research and development on recovery processes" (p. 1). This report includes tables, and illustrations.
Date: September 1964
Creator: Weingerger, Arthur J. & DeLapp, Darwin F.
Partner: UNT Libraries Government Documents Department

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

Description: Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.
Date: September 12, 2003
Creator: James T. Cobb, Jr.
Partner: UNT Libraries Government Documents Department

Field demonstration project using clean coal technology by-products

Description: The disposal of flue gas desulfurization (FGD) by-products has become a major concern as issues of emission cleansing and landfill costs continue to rise. Laboratory tests conducted in the Department of Civil Engineering at The Ohio State University have shown that the dry FGD by-products possess certain engineering properties which have been proven desirable in a considerable number of construction uses. As a follow on to the laboratory program, a field investigation into possible engineering uses of dry FGD wastes was initiated. In the work presented in this paper, FGD by-products were used to reconstruct the failed portion of a highway embankment. The paper presents the procedures used in the process and examines the stability of the repaired highway embankment.
Date: March 1, 1995
Creator: Kim, Sung Hwan; Nodjomian, S. & Wolfe, W.
Partner: UNT Libraries Government Documents Department

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

Description: This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.
Date: May 10, 1999
Creator: James T. Cobb, Jr.; Neufeld, Ronald D. & Agostini, Jana
Partner: UNT Libraries Government Documents Department

RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS

Description: The goals of the project are two-fold: (1) to upgrade semi-quantitative X-ray diffraction (QXRD) methods presently used in analyzing complex coal combustion by-product (CCB) systems, with the quantitative Rietveld method, and (2) to apply this method to a set of by-product materials that have been disposed or utilized for a long period (5 years or more) in contact with the natural environment, to further study the nature of CCB diagenesis. The project is organized into three tasks to accomplish these two goals: (1) thorough characterization of a set of previously analyzed disposed by-product materials, (2) development of a set of CCB-specific protocols for Rietveld QXRD, and (3) characterization of an additional set of disposed CCB materials, including application of the protocols for Rietveld QXRD developed in Task 2.
Date: March 1, 1998
Creator: McCarthy, Gregory J. & Grier, Dean G.
Partner: UNT Libraries Government Documents Department