396 Matching Results

Search Results

Advanced search parameters have been applied.

Dimension Stone

Description: Report issued by the U.S. Bureau of Mines discussing the building material, dimension stone. As stated in the introduction, "the pertinent properties and principal specifications for stone are described along with exploration, mining, finishing, and use technology. A brief history and geologic background are also included" (p. 2). This report includes maps, tables, illustrations, and photographs.
Date: 1968
Creator: Barton, William R.
Partner: UNT Libraries Government Documents Department

The limit of strength and toughness of steel

Description: The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the governing principles of strength and toughness, along with the approaches that can be used to improve these properties and the inherent limits to how strong and tough a steel can be.
Date: December 17, 2001
Creator: Guo, Zhen
Partner: UNT Libraries Government Documents Department

Ring-On-Ring Tests and Load Capacity of Cladding Glass

Description: Report issued by the National Bureau of Standards over studies conducted on the load capacity of cladding glass. Testing methods are discussed. This report includes tables, photographs, and illustrations.
Date: August 1984
Creator: Simiu, Emil; Reed, Dorothy A.; Yancey, Charles W. C.; Martin, Jonathan W.; Hendrickson, Erik M.; Gonzalez, Armando C. et al.
Partner: UNT Libraries Government Documents Department

Selection of lumber for farm and home building.

Description: A guide to selecting lumber for construction projects. Includes an overview of the classification of woods according to their properties, the various lumber grades and sizes, and the types of lumber products available in the retail market.
Date: January 1958
Creator: Sweet, Carroll Van Rennsaeleer, 1892- & Johnson, R. P. A. (Robert Pilson Albert), 1888-
Partner: UNT Libraries Government Documents Department

Behavior of structural clay tile infilled frames

Description: Steel frames infilled with structural clay tile have been used in commercial and industrial buildings for most of this century. Often these buildings are located in moderate to high seismic zones and are likely to experience earthquake forces. Little prior research has been conducted to investigate the behavior of clay tile infills under lateral loading. Twenty-one large-scale clay tile infilled frames were tested to determine their behavior and correlate the results with other available experimental data. The infills greatly increased the in-plane stiffness and strength of the otherwise flexible framing. Two in-plane failure mechanisms were observed, diagonal cracking and comer crushing. Under uniform out-of-plane load, the infills cracked along the mortar joints and developed membrane forces. Tremendous out-of-plane capacity was observed as the panels arched vertically and then horizontally, remaining stable after ultimate capacity was reached. Under sequential and combined bidirectional loadings, the panels remained stable with little interaction of the in-plane and out-of-plane behavior, particularly in the frame member forces. Analytical comparisons of measured versus predicted stiffness, ultimate capacity, and frame member forces were performed. A numerical model based on a piecewise linear equivalent strut was developed. Recommendations for evaluation of clay tile infills subjected to seismic loads were proposed.
Date: December 18, 1994
Creator: Flanagan, R.D.
Partner: UNT Libraries Government Documents Department

New structural materials technologies: opportunities for the use of advanced ceramics and composites

Description: This memorandum is part of a larger assessment which will address the impact of advanced structural materials on the competitiveness of the U.S. manufacturing sector, and offer policy options for accelerating the commercial utilization of these materials.
Date: September 1986
Creator: United States. Congress. Office of Technology Assessment.
Partner: UNT Libraries Government Documents Department

Impact of the temperature dependency of fiberglass insulation R-value on cooling energy use in buildings

Description: Building energy models usually employ a constant, room-temperature-measured value for the thermal resistance of fiberglass roof insulation. In summer, however, the mean temperature of roof insulation can rise significantly above room temperature, lowering the insulation`s thermal resistance by 10% to 20%. Though the temperature dependence of the thermal resistance of porous materials like fiberglass has been extensively studied, it is difficult to theoretically predict the variation with temperature of a particular fiberglass blanket, from first principles. Heat transfer within fiberglass is complicated by the presence of three significant mechanisms - conduction through air, conduction through the glass matrix, and radiative exchange within the matrix - and a complex, unknown internal geometry. Purely theoretical models of fiberglass heat transfer assume highly simplified matrix structures and require typically-unavailable information about the fiberglass, such as its optical properties. There is also a dearth of useful experimental data. While the thermal resistances of many individual fiberglass samples have been measured, there is only one practical published table of thermal resistance vs. both temperature and density. Data from this table was incorporated in the DOE-2 building energy model. DOE-2 was used to simulate the roof surface temperature, roof heat flux, and cooling energy consumption of a school bungalow whose temperature and energy use had been monitored in 1992. The DOE-2 predictions made with and without temperature variation of thermal conductivity were compared to measured values. Simulations were also run for a typical office building. Annual cooling energy loads and annual peak hourly cooling powers were calculated for the office building using both fixed and variable thermal conductivities, and using five different climates. The decrease in the R-value of the office building`s roof led to a 2% to 4% increase in annual cooling energy load.
Date: August 1, 1996
Creator: Levinson, R.; Akbari, H. & Gartland, L.
Partner: UNT Libraries Government Documents Department

Compressive strength of masonry (f{sub m}{prime}) for the Oak Ridge Y- 12 Plant, Hollow Clay Tile Walls

Description: Prism tests have been performed on the HCT walls. The three groups of data were treated as separate data points and averaged. The recommended effective compressive strengths for HCT walls are 735 psi for single wythe 6- and 8-in. walls, and 495 psi for the double wythe 13-in. walls.
Date: April 17, 1995
Creator: Fricke, K.E. & Flanagan, R.D.
Partner: UNT Libraries Government Documents Department

High-temperature corrosion in power-generating systems.

Description: Several technologies are being developed to convert coal into clean fuel for use in power generation. From the standpoint of component materials in these technologies, the environments created by coal conversion and their interactions with materials are of interest. Coal is a complex and relatively dirty fuel that contains varying amounts of sulfur and a substantial fraction of noncombustible mineral constituents, commonly called ash. Corrosion of metallic and ceramic structural materials is a potential problem at elevated temperatures in the presence of complex gas environments and coal-derived solid/liquid deposits. This paper discusses the coal-fired systems currently under development, identifies several modes of corrosion degradation that occur in many of these systems, and suggests possible mechanisms of metal wastage. Available data on the performance of materials in some of the environments are highlighted, and the research needed to improve the corrosion resistance of various materials is presented.
Date: May 22, 2002
Creator: Natesan, K.
Partner: UNT Libraries Government Documents Department

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities

Description: Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.
Date: May 1, 2006
Creator: Morrison, G. C.; Corsi, R. L.; Destaillats, H.; Nazaroff, W. W. & Wells, J. R.
Partner: UNT Libraries Government Documents Department

TRADITIONAL METALLURGY, NANOTECHNOLOGIES AND STRUCTURAL MATERIALS: A SORBY AWARD LECTURE

Description: Traditional metallurgical processes are among the many ''old fashion'' practices that use nanoparticles to control the behavior of materials. Many of these practices were developed long before microscopy could resolve nanoscale features, yet the practitioners learned to manipulate and control microstructural elements that they could neither see nor identify. Furthermore, these early practitioners used that control to modify microstructures and develop desired material properties. Centuries old colored glass, ancient high strength steels and medieval organ pipes derived many of their desirable features through control of nanoparticles in their microstructures. Henry Sorby was among the first to recognize that the properties of rocks, minerals, metals and organic materials were controlled by microstructure. However, Mr. Sorby was accused of the folly of trying to study mountains with a microscope. Although he could not resolve nanoscale microstructural features, Mr. Sorby's observations revolutionized the study of materials. The importance of nanoscale microstructural elements should be emphasized, however, because the present foundation for structural materials was built by manipulating those features. That foundation currently supports several multibillion dollar industries but is not generally considered when the nanomaterials revolution is discussed. This lecture demonstrates that using nanotechnologies to control the behavior of metallic materials is almost as old as the practice of metallurgy and that many of the emergent nanomaterials technologists are walking along pathways previously paved by traditional metallurgists.
Date: July 17, 2007
Creator: Louthan, M
Partner: UNT Libraries Government Documents Department

Estimation of uncertain material parameters using modal test data

Description: Analytical models of wind turbine blades have many uncertainties, particularly with composite construction where material properties and cross-sectional dimension may not be known or precisely controllable. In this paper the authors demonstrate how modal testing can be used to estimate important material parameters and to update and improve a finite-element (FE) model of a prototype wind turbine blade. An example of prototype blade is used here to demonstrate how model parameters can be identified. The starting point is an FE model of the blade, using best estimates for the material constants. Frequencies of the lowest fourteen modes are used as the basis for comparisons between model predictions and test data. Natural frequencies and mode shapes calculated with the FE model are used in an optimal test design code to select instrumentation (accelerometer) and excitation locations that capture all the desired mode shapes. The FE model is also used to calculate sensitivities of the modal frequencies to each of the uncertain material parameters. These parameters are estimated, or updated, using a weighted least-squares technique to minimize the difference between test frequencies and predicted results. Updated material properties are determined for axial, transverse, and shear moduli in two separate regions of the blade cross section: in the central box, and in the leading and trailing panels. Static FE analyses are then conducted with the updated material parameters to determine changes in effective beam stiffness and buckling loads.
Date: November 1, 1997
Creator: Veers, P.S.; Laird, D.L.; Carne, T.G. & Sagartz, M.J.
Partner: UNT Libraries Government Documents Department

High precision droplet based new form manufacturing

Description: In collaboration with the University of California at Irvine (UCI), we are working on a new technology that relies on the precise deposition of nanoliter molten-metal droplets that are targeted onto a substrate by electrostatic charging and deflection. By this way, three-dimensional (3D) structural materials can be manufactured microlayer by microlayer. Because the volume of the droplets are small, they rapidly solidify on impact, bringing forth a material component with fine grain structures which lead to enhanced material properties (e.g., strength). UCI is responsible for an experimental investigation of the manufacturing feasibility of this process. LLNL has unique expertise in the computational modeling of 3D heat transfer and solid mechanics and has the large-scale computer resources necessary to model this large system. Process modeling will help move this technology from the bench-top to an industrial process. Applications at LLNL include rapid prototyping of metal parts and manufacturing new alloys by co-jetting different metals.
Date: September 16, 1999
Creator: Aceves,S; Hadjiconstantinou, N; Miller, W O; Orme, M; Sahai, V & Shapiro, A B
Partner: UNT Libraries Government Documents Department

Real-Time Identification and Characterization of Asbestos and Concrete Materials with Radioactive Contamination

Description: Concrete and asbestos-containing materials were widely used in U.S. Department of Energy (DOE) building construction in the 1940s and 1950s. Over the years, many of these porous building materials have been contaminated with radioactive sources, on and below the surface. This intractable radioactive-and-hazardous- asbestos mixed-waste-stream has created a tremendous challenge to DOE decontamination and decommissioning (D&D) project managers. The current practice to identify asbestos and to characterize radioactive contamination depth profiles involve bore sampling, and is inefficient, costly, and unsafe. A three-year research project was started on 10/1/98 at Rensselaer with the following ultimate goals: (1) development of novel non-destructive methods for identifying the hazardous asbestos in real-time and in-situ, and (2) development of new algorithms and apparatus for characterizing the radioactive contamination depth profile in real-time and in-situ.
Date: June 1, 1999
Creator: Xu, George & Zhang, Xi-Cheng
Partner: UNT Libraries Government Documents Department

Real-Time Identification and Characterization of Asbestos and Concrete Materials with Radioactive Contamination

Description: Concrete and asbestos-containing materials were widely used in U.S. Department of Energy (DOE) building construction in the 1940s and 1950s. Over the years, many of these porous building materials have been contaminated with radioactive sources, on and below the surface. This intractable radioactive-and-hazardous-asbestos mixed-waste stream has created a tremendous challenge to DOE decontamination and decommissioning (D&D) project managers. The current practice to identify asbestos and to characterize radioactive contamination depth profiles in based solely on bore sampling, which is inefficient, costly, and unsafe. A three-year research project was started 1998 at Rensselaer with the following ultimate goals: (1) development of novel non-destructive methods for identifying the hazardous asbestos in real-time and in-situ, and (2) development of new algorithms and apparatus for characterizing the radioactive contamination depth profile in real-time and in-situ.
Date: June 1, 2000
Creator: Xu, George & Zhang, Xi-Cheng
Partner: UNT Libraries Government Documents Department

324 Building safety basis criteria document

Description: The Safety Basis Criteria document describes the proposed format, content, and schedule for the preparation of an updated Safety Analysis Report (SAR) and Operational Safety Requirements document (OSR) for the 324 Building. These updated safety authorization basis documents are intended to cover stabilization and deactivation activities that will prepare the facility for turnover to the Environmental Restoration Contractor for final decommissioning. The purpose of this document is to establish the specific set of criteria needed for technical upgrades to the 324 Facility Safety Authorization Basis, as required by Project Hanford Procedure HNF-PRO-705, Safety Basis Planning, Documentation, Review, and Approval.
Date: June 2, 1999
Creator: STEFFEN, J.M.
Partner: UNT Libraries Government Documents Department

ASTM standards for measuring solar reflectance and infrared emittance of construction materials and comparing their steady-state surface temperatures

Description: Numerous experiments on individual buildings in California and Florida show that painting roofs white reduces air conditioning load up to 50%, depending on the thermal resistance or amount of insulation under the roof. The savings, of course, are strong functions of the thermal integrity of a building and climate. In earlier work, the authors have estimated the national energy savings potential from reflective roofs and paved surfaces. Achieving this potential, however, is conditional on receiving the necessary Federal, states, and electric utilities support to develop materials with high solar reflectance and design effective implementation programs. An important step in initiating an effective program in this area is to work with the american Society for Testing and Materials (ASTM) and the industry to create test procedures, rating, and labeling for building and paving materials. A subcommittee of ASTM E06, E06.42, on Cool Construction Materials, was formed as the vehicle to develop standard practices for measuring, rating, and labeling cool construction materials. The subcommittee has also undertaken the development of a standard practice for calculating a solar reflectance index (SRI) of horizontal and low-sloped surfaces. SRI is a measure of the relative steady-state temperature of a surface with respect to a standard white surface (SRI = 100) and a standard black surface (SRI = 0) under standard solar and ambient conditions. This paper discusses the technical issues relating to development of these two ASTM standards.
Date: August 1, 1996
Creator: Akbari, H.; Levinson, R. & Berdahl, P.
Partner: UNT Libraries Government Documents Department

The building materials industry in China: An overview

Description: The present study of China`s building materials industry is a collaborative work between the Energy Research Institute (ERI) of the State Planning Commission of China and Lawrence Berkeley Laboratory (LBL) of the US Department of Energy (USDOE).
Date: December 1, 1994
Creator: Liu, Feng & Wang, Shumao
Partner: UNT Libraries Government Documents Department

Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt

Description: This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: (1) a statistically sound evaluation of the characterization of foundry sand, (2) a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and (3) the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at N{sub ini}, N{sub des}, and N{sub max}. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.
Date: October 31, 2004
Creator: Tikalsky, Pauul J.
Partner: UNT Libraries Government Documents Department

Environmental assessment for the expansion and operation of the Central Shops Borrow Pit at the Savannah River Site

Description: The Department of Energy (DOE) prepared this Environmental Assessment (EA) to assess the potential environmental impacts of the proposed expansion and operation of an existing borrow pit at the Savannah River Site (SRS), located near Aiken, South Carolina. A borrow pit is defined as an excavated area where material has been dug for use as fill at another location. The proposed action would entail the areal enlargement, continued operation, and eventual close-out of the established facility known as the Central Shops Borrow Pit. Operations at SRS supporting waste site closure and the construction and maintenance of site facilities and infrastructure require readily available suitable soil for use as fill material. With the recent depletion of the other existing on-site sources for such material, DOE proposes to expand the existing facility. The National Environmental Policy Act requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. Based on the potential for impacts described herein, DOE will either publish a Finding of No Significant Impact or prepare an Environmental Impact Statement (EIS).
Date: March 1, 1997
Partner: UNT Libraries Government Documents Department