274 Matching Results

Search Results

Advanced search parameters have been applied.

Spin waves in CsVBr{sub 3}

Description: Inelastic neutron scattering has been used to measure spin wave excitations in the quasi-one dimensional S = 3/2 magnetic material CsVBr{sub 3}. Dispersion relations were determined using standard triple-axis methods. Fits to linear spin wave theory yield model Hamiltonian parameters describing magnetic interactions in the system.
Date: July 10, 1997
Creator: Nagler, S.E.; Mandrus, D.G. & Tennant, D.A.
Partner: UNT Libraries Government Documents Department

Core Sampling in Support of the Vadose Zone Transport Field Study

Description: Over 130 soil samples were collected from three soil borings in support of the VZFTS. The first boring was sampled just prior to the first injection test. The other two borings were sampled after completion of the injection tests. These soil samples were collected using a 7.6 cm (3 in) ID splitspoon sampler, with internal 15 cm (6 in.) long Lexan? liners. The samples ranged in depth from 4 to 17 m (13.5 to 56.5 ft), and were submitted to various laboratories for hydraulic property characterization and/or geochemical/tracer analyses. Preliminary results indicate that the major concentration front of the bromide tracer reached a relative depth of 5 m (below the injection point) 8 days after the final water injection and had migrated to a relative depth of about 7 m, 4 days later.
Date: March 9, 2001
Creator: Last, George V & Caldwell, Todd G
Partner: UNT Libraries Government Documents Department

Feedbacks between hydrological heterogeneity and bioremediation induced biogeochemical transformations

Description: For guiding optimal design and interpretation of in-situ treatments that strongly perturb subsurface systems, knowledge about the spatial and temporal patterns of mass transport and reaction intensities are important. Here, a procedure was developed and applied to time-lapse concentrations of a conservative tracer (bromide), an injected amendment (acetate) and reactive species (iron(II), uranium(VI) and sulfate) associated with two field scale biostimulation experiments, which were conducted successively at the same field location over two years. The procedure is based on a temporal moment analysis approach that relies on a streamtube approximation. The study shows that biostimulated reactions can be considerably influenced by subsurface hydrological and geochemical heterogeneities: the delivery of bromide and acetate and the intensity of the sulfate reduction is interpreted to be predominantly driven by the hydrological heterogeneity, while the intensity of the iron reduction is interpreted to be primarily controlled by the geochemical heterogeneity. The intensity of the uranium(VI) reduction appears to be impacted by both the hydrological and geochemical heterogeneity. Finally, the study documents the existence of feedbacks between hydrological heterogeneity and remediation-induced biogeochemical transformations at the field scale, particularly the development of precipitates that may cause clogging and flow rerouting.
Date: April 15, 2009
Creator: Englert, A.; Hubbard, S.S.; Williams, K.H.; Li, L. & Steefel, C.I.
Partner: UNT Libraries Government Documents Department

Laser activity at 1.18 um, 1.07 um, and 0.97 umin the low phonon energy crystalline hosts KPb2Br5 and RbPb2Br5 doped with Nd3+

Description: For the first time laser activity has been achieved in the low phonon energy, moisture-resistant bromide host crystals, neodymium-doped potassium lead bromide (Nd{sup 3+}:KPb{sub 2}Br{sub 5}) and rubidium lead bromide (Nd{sup 3+}:RbPb{sub 2}Br{sub 5}). Laser activity at 1.07 {micro}m was observed for both crystalline materials. Laser operation at the new wavelengths 1.18 {micro}m and 0.97 {micro}m resulting from the {sup 4}F{sub 5/2} + {sup 2}H{sub 9/2} {yields} {sup 4}I{sub J} transitions (J=13/2 and 11/2) in Nd:RPB was achieved for the first time in a solid state laser material. Rare earth- doped MPb{sub 2}Br{sub 5} (M=K, Rb) is a promising candidate for long wavelength infrared applications because of its low phonon frequencies and other favorable features. In principle, Nd{sup 3+}:MPb{sub 2}Br{sub 5} has high potential for laser operation at new wavelengths as well as for the realization of short-wavelength lasing due to upconversion processes.
Date: September 15, 2004
Creator: Rademaker, K; Heumann, E; Payne, S A; Huber, G; Krupke, W F; Isaenko, L I et al.
Partner: UNT Libraries Government Documents Department

Europium-doped barium bromide iodide

Description: Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932). Z. Kristallogr. 83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = +-0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.
Date: October 21, 2009
Creator: Gundiah, Gautam; Hanrahan, Stephen M.; Hollander, Fredrick J. & Bourret-Courchesne, Edith D.
Partner: UNT Libraries Government Documents Department

Performance of LiAlloy/Ag(2)CrO(4) Couples in Molten CsBr-LiBr-KBr Eutectic

Description: The performance of Li-alloy/CsBr-LiBr-KBr/Ag{sub 2}CrO{sub 4} systems was studied over a temperature range of 250 C to 300 C, for possible use as a power source for geothermal borehole applications. Single cells were discharged at current densities of 15.8 and 32.6 mA/cm{sup 2} using Li-Si and Li-Al anodes. When tested in 5-cell batteries, the Li-Si/CsBr-LiBr-KBr/Ag{sub 2}CrO{sub 4} system exhibited thermal runaway. Thermal analytical tests showed that the Ag{sub 2}CrO{sub 4} cathode reacted exothermically with the electrolyte on activation. Consequently, this system would not be practical for the envisioned geothermal borehole applications.
Date: October 18, 1999
Partner: UNT Libraries Government Documents Department

Characterization of the LiSi/CsBr-LiBr-KBr/FeS(2) System for Potential Use as a Geothermal Borehole Power Source

Description: We are continuing to study the suitability of modified thermal-battery technology as a potential power source for geothermal borehole applications. Previous work focused on the LiSi/FeS{sub 2} couple over a temperature range of 350 C to 400 C with the LiBr-KBr-LiF eutectic, which melts at 324.5 C. In this work, the discharge processes that take place in LiSi/CsBr-LiBr-KBr eutectic/FeS{sub 2} thermal cells were studied at temperatures between 250 C and 400 C using pelletized cells with immobilized electrolyte. The CsBr-LiBr-KBr eutectic was selected because of its lower melting point (228.5 C). Incorporation of a quasi-reference electrode allowed the determination of the relative contribution of each electrode to the overall cell polarization. The results of single-cell tests and limited battery tests are presented, along with preliminary data for battery stacks tested in a simulated geothermal borehole environment.
Date: October 18, 1999
Partner: UNT Libraries Government Documents Department

III-Nitride Dry Etching - Comparison of Inductively Coupled Plasma Chemistries

Description: A systematic study of the etch characteristics of GaN, AlN and InN has been performed with boron halides- (BI{sub 3} and BBr{sub 3}) and interhalogen- (ICl and IBr) based Inductively Coupled Plasmas. Maximum etch selectivities of -100:1 were achieved for InN over both GaN and AlN in the BI{sub 3} mixtures due to the relatively high volatility of the InN etch products and the lower bond strength of InN. Maximum selectivies of- 14 for InN over GaN and >25 for InN over AlN were obtained with ICl and IBr chemistries. The etched surface morphologies of GaN in these four mixtures are similar or better than those of the control sample.
Date: November 10, 1998
Creator: Abernathy, C.R.; Cho, H.; Donovan, S.M.; Hahn, Y-B.; Han, J.; Hays, D.C. et al.
Partner: UNT Libraries Government Documents Department

Hydrologic Data and Evaluation for Model Validation Wells, MV-1, MV-2, and MV-3 near the Project Shoal Area

Description: In 2006, a drilling campaign was conducted at the Project Shoal Area (PSA) to provide information for model validation, emplace long-term monitoring wells, and develop baseline geochemistry for long term hydrologic monitoring. Water levels were monitored in the vicinity of the drilling, in the existing wells HC-1 and HC-6, as well as in the newly drilled wells, MV-1, MV-2 and MV-3 and their associated piezometers. Periodic water level measurements were also made in existing wells HC-2, HC-3, HC-4, HC-5 and HC-7. A lithium bromide chemical tracer was added to drilling fluids during the installation of the monitoring and validation (MV) wells and piezometers. The zones of interest were the fractured, jointed and faulted horizons within a granitic body. These horizons generally have moderate hydraulic conductivities. As a result, the wells and their shallower piezometers required strenuous purging and development to remove introduced drilling fluids as evidenced by bromide concentrations. After airlift and surging well development procedures, the wells were pumped continuously until the bromide concentration was less then 1 milligram per liter (mg/L). Water quality samples were collected after the well development was completed. Tritium scans were preformed before other analyses to ensure the absence of high levels of radioactivity. Tritium levels were less than 2,000 pico-curies per liter. Samples were also analyzed for carbon-14 and iodine-129, stable isotopes of oxygen and hydrogen, as well as major cations and anions. Aquifer tests were performed in each MV well after the bromide concentration fell below acceptable levels. Water level data from the aquifer tests were used to compute aquifer hydraulic conductivity and transmissivity
Date: February 14, 2007
Creator: Lyles, B.; Oberlander, P.; Gillespie, D.; Donithan, D.; Chapman, J. & Healey, J.
Partner: UNT Libraries Government Documents Department

Optical pump-probe processes in Nd 3+ doped KPb2Br5, RbPb2Br5, and KPb2CI5

Description: Recently, laser activity has been achieved in the low phonon energy, moisture-resistant bromide host crystals, neodymium-doped potassium lead bromide (Nd{sup 3+}:KPb{sub 2}Br{sub 5}) and rubidium lead bromide (Nd{sup 3+}:RbPb{sub 2}Br{sub 5}). Laser activity at 1.07 {micro}m was observed for both crystalline materials. Laser operation at the new wavelengths 1.18 {micro}m and 0.97 {micro}m resulting from the {sup 4}F{sub 5/2}+{sup 2}H{sub 9/2} {yields} {sup 4}I{sub J} transitions (J=13/2 and 11/2) in Nd:RPB was achieved for the first time in a solid state laser material. In this paper we present cw pump-probe spectra in order to discuss excited state absorption, reabsorption processes due to the long lived lower laser levels as well as possible depopulation mechanisms feasible for more efficient laser operation in these crystals. The bromides will be compared with potassium lead chloride (Nd{sup 3+}:KPb{sub 2}Cl{sub 5}).
Date: October 28, 2004
Creator: Rademaker, K; Huber, G; Payne, S A; Osiac, E & Isaenko, L I
Partner: UNT Libraries Government Documents Department

Stability of eutectic interface during directional solidification

Description: Directional solidification of eutectic alloys shows different types of eutectic morphologies. These include lamellar, rod, oscillating and tilting modes. The growth of these morphologies occurs with a macroscopically planar interface. However, under certain conditions, the planar eutectic front becomes unstable and gives rise to a cellular or a dendritic structure. This instability leads to the cellular/dendritic structure of either a primary phase or a two-phase structure. The objective of this work is to develop a fundamental understanding of the instability of eutectic structure into cellular/dendritic structures of a single phase and of two-phases. Experimental studies have been carried out to examine the transition from a planar to two-phase cellular and dendritic structures in a ceramic system of Alumina-Zirconia (Al{sub 2}O{sub 3}-ZrO{sub 2}) and in a transparent organic system of carbon tetrabromide and hexachloroethane (CBr{sub 4}-C{sub 2}Cl{sub 6}). Several aspects of eutectic interface stability have been examined.
Date: April 23, 1996
Creator: Han, S.H.
Partner: UNT Libraries Government Documents Department

Zinc Bromide Combustion: Implications for the Consolidated Incinerator Facility

Description: In the nuclear industry, zinc bromide (ZnBr2) is used for radiation shielding. At Savannah River Site (SRS) zinc bromide solution, in appropriate configurations and housings, was used mainly for shielding in viewing windows in nuclear reactor and separation areas. Waste stream feeds that will be incinerated at the CIF will occasionally include zinc bromide solution/gel matrices.The CIF air pollution systems control uses a water-quench and steam atomizer scrubber that collects salts, ash and trace metals in the liquid phase. Water is re-circulated in the quench unit until a predetermined amount of suspended solids or dissolved salts are present. After reaching the threshold limit, "dirty liquid", also called "blowdown", is pumped to a storage tank in preparation for treatment and disposal. The air pollution control system is coupled to a HEPA pre-filter/filter unit, which removes particulate matter from the flue gas stream (1).The objective of this report is to review existing literature data on the stability of zinc bromide (ZnBr2) at CIF operating temperatures (>870 degrees C (1600 degrees F) and determine what the combustion products are in the presence of excess air. The partitioning of the combustion products among the quencher/scrubber solution, bottom ash and stack will also be evaluated. In this report, side reactions between zinc bromide and its combustion products with fuel oil were not taken into consideration.
Date: December 16, 1998
Creator: Oji, L.N.
Partner: UNT Libraries Government Documents Department

Lateral interaction energy derived from Frumkin isotherm for c(2 x 2) Br/Ag(100)

Description: The structure of the bromide adlayer on Ag(100) and the adsorption isotherm have been determined by using in situ surface x-ray scattering techniques and chronocoulometry. Bromide adsorbed on Ag(100) forms a fourfold-hollow-site lattice gas and the adsorption saturates at 1/2 monolayer in a c(2 x 2) structure. The Frumkin isotherm has been employed to fit the experimentally obtained isotherm. Using the experimentally determined electrosorption valency, the lateral interaction energy of 220 meV/atom at full coverage is obtained.
Date: October 1997
Creator: Wang, J. X.; Ocko, B. M. & Wandlowski, T.
Partner: UNT Libraries Government Documents Department


Description: Ever-stringent environmental constraints dictate that future coal cleaning technologies be compatible with micron-size particles. This research program seeks to develop an advanced coal cleaning technology uniquely suited to micron-size particles, i.e., aqueous biphase extraction. The partitioning behaviors of silica in the polyethylene glycol (PEG)/dextran (Dex) and dextran/Triton X-100 (TX100) systems have been investigated, and the effects of sodium dodecylsulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) on solid partition have been studied. In both biphase systems, silica particles stayed in the top PEG-rich phase at low pH. With increase in pH, the particles moved from the top phase to the interface, then to the bottom phase. At very high pH, the solids preferred the top phase again. These trends are attributable to variations in the polymer/solid and nonionic surfactant/solid interactions. Addition of ionic surfactants into these two systems introduces a weakly charged environment, since ionic surfactants concentrate into one phase, either the top phase or the bottom phase. Therefore, coulombic forces also play a key role in the partition of silica particles because electrostatic attractive or repulsive forces are produced between the solid surface and the ionic-surfactant-concentrated phase. For the PEG/dextran system in the presence of SDS, SiO{sub 2} preferred the bottom dextran-rich phase above its pH{sub PZC}. However, addition of DTAB moved the oxide particles from the top phase to the interface, and then to the bottom phase, with increase in pH. These different behaviors are attributable to the fact that SDS and DTAB concentrated into the opposite phase of the PEG/dextran system. On the other hand, in the dextran/Triton X-100 system, both ionic surfactants concentrated in the top surfactant-rich phase and formed mixed micelles with TX100. Therefore, addition of the anionic surfactant, SDS, moved the silica particles from top phase to the interface or bottom phase. On the other hand, ...
Date: June 30, 2001
Creator: Osseo-Asare, K. & Zeng, X.
Partner: UNT Libraries Government Documents Department

Effect of Mo on pitting corrosion of ferritic steels in bromide and chloride solutions

Description: A model for pitting corrosion of stainless steels, independent of changes of passive film properties, was tested using Fe-18%Cr-x%Mo alloys in bromide and chlorine solutions. In 1M LiCl the pitting potential improved from {minus}50 mV{sub sce} to about 1200 mV{sub sce} on increasing Mo from 2% to 10%. In 1M LiBr the pitting potential increased from 125 to only 560 mV{sub sce}. Active dissolution kinetics of these steels in saturated solutions in a simulated pit were measured. Tafel lines for dissolution moved to more noble potentials with increases in Mo, indicating Mo inhibited dissolution rates. The potential increases were found to be equal to the increases in pitting potential for both halides. Agreement was interpreted in terms maintaining high halide concentrations in the pit by high rates of active metal dissolution. Bromide was less effective suggesting it interacted with Mo adsorbed on the dissolving surface.
Date: December 1, 1997
Creator: Kaneko, M. & Isaacs, H.S.
Partner: UNT Libraries Government Documents Department