Search Results

Advanced search parameters have been applied.

Characterization of Sediments from the Soil Desiccation Pilot Test (SDPT) Site in the BC Cribs and Trenches Area

Description: This technical report documents the results of laboratory geochemical and hydrologic measurements of sediments collected from new borehole 299-E13-65 (C7047) and comparison of the results with those of nearby borehole 299-13E-62 (C5923) both drilled in the BC Cribs and Trenches Area. The total and water-leachable concentrations of key contaminants will be used to update contaminant-distribution conceptual models and to provide more data for improving baseline risk predictions and remedial alternative selections. Improved understanding of subsurface conditions and methods to remediate these principal contaminants can be also used to evaluate the application of specific technologies to other contaminants across the Hanford Site.
Date: September 25, 2009
Creator: Um, Wooyong; Truex, Michael J.; Valenta, Michelle M.; Iovin, Cristian; Kutnyakov, Igor V.; Chang, Hyun-shik et al.
Partner: UNT Libraries Government Documents Department

Geologic and Well-Construction Data for the H-8 Borehole Complex Near the Proposed Waste Isolation Pilot Plant Site, Southeastern New Mexico

Description: From introduction: The U.S. Geological Survey is participating in this evaluation by developing information on the ground-water hydrology of the region, obtaining geologic borehole data, and conducting hydrologic tests in boreholes on and near the WIPP site. This report provides well-construction information and lithologic data about the Rustler and Salado Formations and the top of the salt interval within the Salado Formation at the H-8 borehole complex.
Date: 1982
Creator: Wells, J. G. & Drellack, S. L., Jr.
Partner: UNT Libraries Government Documents Department

Geologic and Well-Construction Data for the H-9 Borehole Complex Near the Proposed Waste Isolation Pilot Plant Site, Southeastern New Mexico

Description: From introduction: The U.S. Geological Survey is participating in this evaluation by developing information on the ground-water hydrology of the region, obtaining geologic borehole data, and conducting hydrologic tests in boreholes on and near the WIPP site. This report provides well-construction information and lithologic data about the Rustler and Salado Formations and the top of the salt interval within the Salado Formation at the H-9 borehole complex.
Date: 1982
Creator: Drellack, S. L., Jr. & Wells, J. G.
Partner: UNT Libraries Government Documents Department

Statement of Work for Direct Push Technology Characterization Borehole Installations During Fiscal Year 2006, 300-FF-5 Operable Unit

Description: This document specifies activities to be performed by FHI to fulfill Part II of the 300-FF-5 Operable Unit Limited Field Investigation. The scope includes driving up to 15 direct push technology boreholes to the water table for radiological geophysical logging of the vadose zone to define the vertical extent and concentration of process uranium waste in the subsurface. Drilling and sampling field activates will follow FHI waste management, risk assessment and QA process and procedures. The sampling and analysis of information recovered during this characterization will meet the Hanford Performance Assessment Project QAAP requirements.
Date: November 29, 2005
Creator: Williams, Bruce A.
Partner: UNT Libraries Government Documents Department

Effect of multiple and delayed jet impact and penetration on concrete target borehole diameter

Description: The effect of multiple and delayed jet impact and penetration on the borehole diameter in concrete targets is discussed in this paper. A first-order principle of shaped-charge jet penetration is that target hole volume is proportional to the energy deposited in the target by the jet. This principle is the basis for the relation that target borehole diameter at any depth along the penetration path is proportional to the jet energy deposited in the target at that location. Our current research shows that the 'jet energy per unit hole volume constant' for concrete can be substantially altered by the use of multiple and delayed jet impacts. It has been shown that enhanced entrance crater formation results from the simultaneous impact and penetration of three shaped-charge jets. We now demonstrate that enhanced borehole diameter is also observed by the simultaneous impact and penetration of multiple shaped-charge jets followed by the delayed impact and penetration of a single shaped-charge jet.
Date: January 26, 2001
Creator: Murphy, M J; Baum, D W; Kuklo, R M & Simonson, S C
Partner: UNT Libraries Government Documents Department

In-situ borehole seismic monitoring of injected CO2 at the FrioSite

Description: The U.S. Dept. of Energy funded Frio Brine Pilot provided an opportunity to test borehole seismic monitoring techniques in a saline formation in southeast Texas. A relatively small amount of CO{sub 2} was injected (about 1600 tons) into a thin injection interval (about 6 m thick at 1500 m depth). Designed tests included time-lapse vertical seismic profile (VSP) and crosswell surveys which investigated the detectability of CO{sub 2} with surface-to-borehole and borehole-to-borehole measurement.
Date: June 1, 2006
Creator: Daley, Thomas M. & Korneev, Valeri A.
Partner: UNT Libraries Government Documents Department

Assurance Requirements Compliance for the Greater Confinement Disposal Boreholes, Area 5 Radioactive Waste Management Site, Nevada Test Site, 2007, November

Description: This paper addresses deficiencies identified with the. Performance Assessment for Greater Confinement Disposal (GCD) Boreholes compliance with the Title 40 Code of federal Regulations (CFR) Part 191.14, "Assurance Requirements" (CFR, 1985). The Transuransic Waste Disposal Federal Review Group (TFRG). and U.S Department of Energy Headquarters , need to concur that the assurance requirements have been met at the time of closure of the Area 5 Radioactive Waste Management Site.
Date: November 1, 2007
Creator: Wieland, Denise; Yucel, Vefa; Desotell, Lloyd; Shott, Greg; Crowe, Bruce; Krenzien, Susan et al.
Partner: UNT Libraries Government Documents Department

Continuous monitoring of crosswell seismic travel time

Description: In two separate shallow field experiments, at two distancescales, we have used continuous monitoring to estimate the effect ofbarometric pressure on crosswell travel time and thereby calibrated thestress sensitivity of the rock volume between the wells. In a 3 mexperiment we found a stress sensitivity of 10-6/Pa while in a 30 mexperiment the sensitivity was 5 x 10-8 /Pa. Results from a deeper (1km), 2 month experiment at the San Andreas fault observation boreholeswill be presented if analysis is completed.
Date: April 14, 2006
Creator: Daley, Thomas M.; Silver, Paul G.; Niu, Fenglin & Majer, Ernest L.
Partner: UNT Libraries Government Documents Department

Productivity and Injectivity of Horizontal Wells

Description: A general wellbore flow model is presented to incorporate not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow. Influence of inflow or outflow on the wellbore pressure drop is analyzed. New friction factor correlations accounting for both inflow and outflow are also developed. The greatest source of uncertainty is reservoir description and how it is used in simulators. Integration of data through geostatistical techniques leads to multiple descriptions that all honor available data. The reality is never known. The only way to reduce this uncertainty is to use more data from geological studies, formation evaluation, high resolution seismic, well tests and production history to constrain stochastic images. Even with a perfect knowledge about reservoir geology, current models cannot do routine simulations at a fine enough scale. Furthermore, we normally don't know what scale is fine enough. Upscaling introduces errors and masks some of the physical phenomenon that we are trying to model. The scale at which upscaling is robust is not known and it is probably smaller in most cases than the scale actually used for predicting performance. Uncertainties in the well index can cause errors in predictions that are of the same magnitude as those caused by reservoir heterogeneities. Simplified semi-analytical models for cresting behavior and productivity predictions can be very misleading.
Date: April 29, 1997
Creator: Aziz, Khalid; Arababi, Sepehr & Hewett, Thomas A.
Partner: UNT Libraries Government Documents Department

Engineering Report on the Great Divide Basin Drilling Project, Sweetwater County, Wyoming

Description: Introduction: This report presents engineering details, statistics, individual borehole histories, and geophysical logs of the nine holes drilled in the Great Divide Basin project during the 1981 drilling program. General information is presented regarding specific problems including weather and logistics. A separate geologic report is being prepared and will be available through the Bendix Field Engineering Corporation Technical Library in the near future.
Date: September 1981
Creator: Harrison, Jack Edward
Partner: UNT Libraries Government Documents Department

Entry Boreholes Summary Report for the Waste Treatment Plant Seismic Boreholes Project

Description: This report describes the 2006 fiscal year field activities associated with the installation of four cable-tool-drilled boreholes located within the boundary of the Waste Treatment Plant (WTP), DOE Hanford site, Washington. The cable-tool-drilled boreholes extend from surface to ~20 ft below the top of basalt and were utilized as cased entry holes for three deep boreholes (approximately 1400 ft) that were drilled to support the acquisition of sub-surface geophysical data, and one deep corehole (1400 ft) that was drilled to acquire continuous core samples from underlying basalt and sedimentary interbeds. The geophysical data acquired from these boreholes will be integrated into a seismic response model that will provide the basis for defining the seismic design criteria for the WTP facilities.
Date: February 28, 2007
Creator: Horner, Jake A.
Partner: UNT Libraries Government Documents Department

Borehole Miner - Extendible Nozzle Development for Radioactive Waste Dislodging and Retrieval from Underground Storage Tanks

Description: This report summarizes development of borehole-miner extendible-nozzle water-jetting technology for dislodging and retrieving salt cake, sludge} and supernate to remediate underground storage tanks full of radioactive waste. The extendible-nozzle development was based on commercial borehole-miner technology.
Date: September 25, 1998
Creator: Enderlin, C. W.; Alberts, D. G.; Bamberger, J. A. & White, M.
Partner: UNT Libraries Government Documents Department

SEAMIST{trademark}

Description: SEAMIST has been demonstrated and deployed as an innovative tool to better access the subsurface for characterization and monitoring of contaminants in both vertical and horizontal boreholes. The technology has been developed by industry with assistance from DOE's Office of Technology Development to ensure it meets the needs of the environmental restoration market.
Date: August 1, 1995
Partner: UNT Libraries Government Documents Department

Review of Geophysical Characterization Methods Used at the Hanford Site

Description: Geophysical methods have been used for characterization of hydrogeologic conditions and/or contaminant distributions at the Hanford site since at least the mid- to late-1940s. A review of these geophysical methods is presented in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical-logging methods.
Date: March 23, 2000
Creator: Last, G. V. & Horton, D. G.
Partner: UNT Libraries Government Documents Department

The U-tube: A new paradigm in borehole fluid sampling

Description: Fluid samples from deep boreholes can provide insights into subsurface physical, chemical, and biological conditions. Recovery of intact, minimally altered aliquots of subsurface fluids is required for analysis of aqueous chemistry, isotopic composition, and dissolved gases, and for microbial community characterization. Unfortunately, for many reasons, collecting geofluids poses a number of challenges, from formation contamination by drilling to maintaining integrity during recovery from depths. Not only are there substantial engineering issues in retrieval of a representative sample, but there is often the practical reality that fluid sampling is just one of many activities planned for deep boreholes. The U-tube geochemical sampling system presents a new paradigm for deep borehole fluid sampling. Because the system is small, its ability to integrate with other measurement systems and technologies opens up numerous possibilities for multifunctional integrated wellbore completions. To date, the U-tube has been successfully deployed at four different field sites, each with a different deployment modality, at depths from 260 m to 2 km. While the U-tube has proven to be highly versatile, these installations have resulted in data that provide additional insights for improving future U-tube deployments.
Date: October 1, 2009
Creator: Freifeld, B. M.
Partner: UNT Libraries Government Documents Department

Waste Isolation Pilot Plant borehole data

Description: Data pertaining to all the surface boreholes used at the WIPP site for site characterization hydrological testing and resource evaluation exist in numerous source documents. This project was initiated to develop a comprehensive data base that would include the data on all WIPP related surface boreholes from the Atomic Energy Commission, Waste Isolation Pilot Plant Energy Research and Development Administration, Department of Energy, and Hydrologic Test Borehole Programs. The data compiled from each borehole includes: operator, permit number, location, total depth, type of well, driller, drilling record, casing record, plugging schedule, and stratigraphic summary. There are six groups of boreholes contained in this data base, they are as follows: Commercially Drilled Potash Boreholes, Energy Department Wells, Geologic Exploration Boreholes, Hydrologic Test Boreholes, Potash Boreholes, and Subsurface Exploration Boreholes. There were numerous references which contained borehole data. In some cases the data found in one document was inconsistent with data in another document. In order to ensure consistency and accuracy in the data base, the same references were used for as many of the boreholes as possible. For example, all elevations and locations were taken from Compilation and Comparison of Test-Hole Location Surveys in the Vicinity of the WIPP Site. SAND 88-1065, Table 3-5. There are some sections where a data field is left blank. In this case, the information was either not applicable or was unavailable.
Date: April 1, 1995
Partner: UNT Libraries Government Documents Department

Modeling Explosive/Rock Interaction During Presplitting Using ALE Computational Methods

Description: Arbitrary Lagrangian Eulerian (ALE) computational techniques allow treatment of gases, liq- uids, and solids in the same simulation. ALE methods include the ability to treat shockwaves in gases, liquids, and solids and the interaction of shockwaves with each other and with media from one of the other categories. ALE codes can also treat explosive detonation and the expansion of the explosive gases and their interaction with air and solids. ALEGRA is a 3-DALE code that has been developed at Sandia National Laboratories over the past few years. ALEGRA has been applied to a 2-D simulation of presplitting using decoupled explosives in rock blasting with very interesting results. The detonation of the explosive at the bottom of the hole sends a shock wave up the borehole driven by the explosive gas expanding into air. The explosive gas compresses the air against the stemming column where it rebounds and recompresses at the bottom of the borehole. This type of ringing takes several cycles to damp out. The explosively induced expansion of the borehole is also treated by ALEGRA as well as the shock wave imparted to the rock. The presentation of this paper will include sev- eral computer animations to aid in understanding this complex phenomenon.
Date: April 27, 1999
Creator: Jensen, Richard P. & Preece, Dale S.
Partner: UNT Libraries Government Documents Department
Back to Top of Screen