106 Matching Results

Search Results

Advanced search parameters have been applied.

National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Emission Credits Resulting from Implementation of Energy Conservation Measures

Description: The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., subpart DDDDD of CFR part 63). This document divides Boiler System conservation opportunities into four functional areas: 1) the boiler itself, 2) the condensate recovery system, 3) the distribution system, and 4) the end uses of the steam. This document provides technical information for documenting emissions credits proposed in the Implementation Plan for functional areas 2) though 4). This document does not include efficiency improvements related to the Boiler tune-ups.
Date: July 1, 2012
Creator: Cox, Daryl; Papar, Riyaz & Wright, Dr. Anthony
Partner: UNT Libraries Government Documents Department

Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration

Description: Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system—the Super Boiler—for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to 50% smaller in footprint, has a ...
Date: April 17, 2013
Creator: Liss, William E & Cygan, David F
Partner: UNT Libraries Government Documents Department

Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report

Description: The primary purpose of this project is to develop and validate an innovative, scalable phase change salt thermal energy storage (TES) system that can interface with Infinia’s family of free-piston Stirling engines (FPSE). This TES technology is also appropriate for Rankine and Brayton power converters. Solar TES systems based on latent heat of fusion rather than molten salt temperature differences, have many advantages that include up to an order of magnitude higher energy storage density, much higher temperature operation, and elimination of pumped loops for most of Infinia’s design options. DOE has funded four different concepts for solar phase change TES, including one other Infinia awarded project using heat pipes to transfer heat to and from the salt. The unique innovation in this project is an integrated TES/pool boiler heat transfer system that is the simplest approach identified to date and arguably has the best potential for minimizing the levelized cost of energy (LCOE). The Phase 1 objectives are to design, build and test a 1-hour TES proof-of-concept lab demonstrator integrated with an Infinia 3 kW Stirling engine, and to conduct a preliminary design of a 12-hour TES on-sun prototype.
Date: May 15, 2013
Creator: Qiu, Songgang
Partner: UNT Libraries Government Documents Department

The next generation of oxy-fuel boiler systems

Description: Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.
Date: January 1, 2005
Creator: Ochs, Thomas L.; Gross, Alex (Jupiter Oxygen Corp.); Patrick, Brian (Jupiter Oxygen Corp.); Oryshchyn, Danylo B.; Summers, Cathy A. & Turner, Paul C.
Partner: UNT Libraries Government Documents Department

Boiler MACT Technical Assistance (Fact Sheet)

Description: Fact sheet describing the changes to Environmental Protection Act process standards. The DOE will offer technical assistance to ensure that major sources burning coal and oil have information on cost-effective, clean energy strategies for compliance, and to promote cleaner, more efficient boiler burning to cut harmful pollution and reduce operational costs. The U.S. Environmental Protection Agency (EPA) is expected to finalize the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)), in Spring 2012. This rule applies to large and small boilers in a wide range of industrial facilities and institutions. The U.S. Department of Energy (DOE) will offer technical assistance to ensure that major sources burning coal or oil have information on cost-effective clean energy strategies for compliance, including combined heat and power, and to promote cleaner, more efficient boilers to cut harmful pollution and reduce operational costs.
Date: March 1, 2012
Partner: UNT Libraries Government Documents Department

Final Progress Report

Description: The objective of this project was to complete the specifications and drawings for a variable speed kitchen exhaust system and the boiler heating system which when implemented will improve the heating efficiency of the building. The design work was focused in two key areas: kitchen ventilation and heating for the Ernie Turner Center building (ETC). RSA completed design work and issued a set of 100% drawings. RSA also worked with a cost estimator to put together a detailed cost estimate for the project. The design components are summarized.
Date: March 21, 2011
Creator: Fredeen, Amy
Partner: UNT Libraries Government Documents Department

Establishing an energy efficiency recommendation for commercial boilers

Description: To assist the federal government in meeting its energy reduction goals, President Clinton's Executive Order 12902 established the Procurement Challenge, which directed all federal agencies to purchase equipment within the top 25th percentile of efficiency. Under the direction of DOE's Federal Energy Management Program (FEMP), the Procurement Challenge's goal is to create efficiency recommendations for all energy-using products that could substantially impact the government's energy reduction goals, like commercial boilers. A typical 5,000,000 Btuh boiler, with a thermal efficiency of 83.2%, can have lifetime energy cost savings of $40,000 when compared to a boiler with a thermal efficiency of 78%. For the federal market, which makes up 2% of the boiler market, this means lifetime energy cost savings of over $25,600,000. To establish efficiency recommendations, FEMP uses standardized performance ratings for products sold in the marketplace. Currently, the boiler industry uses combustion efficiency and, sometimes, thermal efficiency performance measures when specifying a commercial boiler. For many years, the industry has used these efficiency measures interchangeably, causing confusion about boiler performance measurements, and making it difficult for FEMP to establish the top 25th percentile of efficiency. This paper will illustrate the method used to establish FEMP's recommendation for boilers. The method involved defining a correlation between thermal and combustion efficiency among boiler classifications; using the correlation to model a data set of all the boiler types available in the market; and identifying how the correlation affected the top 25th percentile analysis. The paper also will discuss the applicability of this method for evaluating other equipment for which there are limited data on performance ratings.
Date: August 1, 2000
Creator: Ware, Michelle J.
Partner: UNT Libraries Government Documents Department

Steam systems in industry: Energy use and energy efficiency improvement potentials

Description: Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.
Date: July 22, 2001
Creator: Einstein, Dan; Worrell, Ernst & Khrushch, Marta
Partner: UNT Libraries Government Documents Department

Life Cycle Assessment of Coal-fired Power Production

Description: Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (this tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).
Date: September 1, 1999
Creator: Spath, P. L.; Mann, M. K. & Kerr, D. R.
Partner: UNT Libraries Government Documents Department

Task 2: Boiler Corrosion,

Description: For continued use of coal for power generation, there are needs to: –Improve efficiency –Decrease emissions (esp. CO2) –Use alternate fuels or fuel mixes
Date: April 1, 2009
Creator: Holcomb, G. R.; Covino, B. S., Jr.; Shim, H.-S.; Davis, K.; Eden, D. A.; White, M. et al.
Partner: UNT Libraries Government Documents Department

Batch Microreactor Studies of Lignin Depolymerization by Bases. 2. Aqueous Solvents

Description: Biomass feedstocks contain roughly 15-30% lignin, a substance that can not be converted to fermentable sugars. Hence, most schemes for producing biofuels assume that the lignin coproduct will be utilized as boiler fuel. Yet, the chemical structure of lignin suggests that it will make an excellent high value fuel additive, if it can be broken down into smaller compounds. From Fiscal year 1997 through Fiscal year 2001, Sandia National Laboratories participated in a cooperative effort with the National Renewable Energy Laboratory and the University of Utah to develop and scale a base catalyzed depolymerization (BCD) process for lignin conversion. SNL's primary role in the effort was to perform kinetic studies, examine the reaction chemistry, and to develop alternate BCD catalyst systems. This report summarizes the work performed at Sandia during Fiscal Year 1999 through Fiscal Year 2001 with aqueous systems. Work with alcohol based systems is summarized in part 1 of this report. Our study of lignin depolymerization by aqueous NaOH showed that the primary factor governing the extent of lignin conversion is the NaOH:lignin ratio. NaOH concentration is at best a secondary issue. The maximum lignin conversion is achieved at NaOH:lignin mole ratios of 1.5-2. This is consistent with acidic compounds in the depolymerized lignin neutralizing the base catalyst. The addition of CaO to NaOH improves the reaction kinetics, but not the degree of lignin conversion. The combination of Na{sub 2}CO{sub 3} and CaO offers a cost saving alternative to NaOH that performs identically to NaOH on a per Na basis. A process where CaO is regenerated from CaCO{sub 3} could offer further advantages, as could recovering the Na as Na{sub 2}CO{sub 3} or NaHCO{sub 3} by neutralization of the product solution with CO2. Model compound studies show that two types of reactions involving methoxy substituents on the aromatic ...
Date: May 1, 2002
Creator: MILLER, JAMES E.; EVANS, LINDSEY; MUDD, JASON E. & BROWN, KARA A.
Partner: UNT Libraries Government Documents Department

Reapplication of energetic materials at fuels

Description: This investigation addresses the combustion-related aspects of the reapplication of energetic materials as fuels in boilers as an economically viable and environmentally acceptable use of excess energetic materials. The economics of this approach indicate that the revenues from power generation and chemical recovery approximately equal the costs of boiler modification and changes in operation. The primary tradeoff is the cost of desensitizing the fuels against the cost of open burn/open detonation (OB/OD) or other disposal techniques. Two principal combustion-related obstacles to the use of energetic-material-derived fuels are NO{sub x} generation and the behavior of metals. NO{sub x} measurements obtained in this investigation indicate that the nitrated components (nitrocellulose, nitroglycerin, etc.) of energetic materials decompose with NO{sub x} as the primary product. This can lead to high uncontrolled NO{sub x} levels (as high as 2600 ppM on a 3% O{sub 2} basis for a 5% blend of energetic material in the fuel). NO{sub x} levels are sensitive to local stoichiometry and temperature. The observed trends resemble those common during the combustion of other nitrogen containing fuels. Implications for NO{sub x} control strategies are discussed. The behavior of inorganic components in energetic materials tested in this investigation could lead to boiler maintenance problems such as deposition, grate failure, and bed agglomeration. The root cause of the problem is the potentially extreme temperature generated during metal combustion. Implications for furnace selection and operation are discussed.
Date: May 1, 1995
Creator: Baxter, L.; Sinquefield, S.; Huey, S.; Lipkin, J.; Shah, D.; Ross, J. et al.
Partner: UNT Libraries Government Documents Department

Batch Microreactor Studies of Lignin Depolymerization by Bases. 1. Alcohol Solvents

Description: Biomass feedstocks contain roughly 10-30% lignin, a substance that can not be converted to fermentable sugars. Hence, most schemes for producing biofuels (ethanol) assume that the lignin coproduct will be utilized as boiler fuel to provide heat and power to the process. However, the chemical structure of lignin suggests that it will make an excellent high value fuel additive, if it can be broken down into smaller molecular units. From fiscal year 1997 through fiscal year 2001, Sandia National Laboratories was a participant in a cooperative effort with the National Renewable Energy Laboratory and the University of Utah to develop and scale a base catalyzed depolymerization (BCD) process for lignin conversion. SNL's primary role in the effort was to utilize rapidly heated batch microreactors to perform kinetic studies, examine the reaction chemistry, and to develop alternate catalyst systems for the BCD process. This report summarizes the work performed at Sandia during FY97 and FY98 with alcohol based systems. More recent work with aqueous based systems will be summarized in a second report.
Date: May 1, 2002
Creator: MILLER, JAMES E.; EVANS, LINDSEY; LITTLEWOLF, ALICIA & TRUDELL, DANIEL E.
Partner: UNT Libraries Government Documents Department

Remaining Sites Verification Package for the 100-D-9 Boiler Fuel Oil Tank Site, Waste Site Reclassification Form 2006-030

Description: The 100-D-9 site is the former location of an underground storage tank used for holding fuel for the 184-DA Boiler House. Results of soil-gas samples taken from six soil-gas probes in a rectangle around the site the tank had been removed from concluded that there were no volatile organic compounds at detectable levels in the area. The 100-D-9 Boiler Fuel Oil Tank Site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.
Date: August 10, 2006
Creator: Dittmer, L. M.
Partner: UNT Libraries Government Documents Department

Measure Guideline: Steam System Balancing and Tuning for Multifamily Residential Buildings

Description: This report was written as a resource for professionals involved in multifamily audits, retrofit delivery, and program design, as well as for building owners and contractors. It is intended to serve as a guide for those looking to evaluate and improve the efficiency and operation of one-pipe steam heating systems. In centrally heated multifamily buildings with steam or hydronic systems, the cost of heat for tenants is typically absorbed into the owner's operating costs. Highly variable and rising energy costs have placed a heavy burden on landlords. In the absence of well-designed and relevant efficiency efforts, increased operating costs would be passed on to tenants who often cannot afford those increases. Misinvestment is a common problem with older heating systems -- multiple contractors may inadequately or inappropriately upgrade parts of systems and reduce system functionality and efficiency, or the system has not been properly maintained.
Date: April 1, 2013
Creator: Choi, J.; Ludwig, P. & Brand, L.
Partner: UNT Libraries Government Documents Department

Jupiter Oxygen Corporation/Albany Research Center Crada Progress Report, September

Description: The Albany Research Center (ARC) has developed a new Integrated Pollutant Removal (IPR) process for fossil-fueled boilers. Pursuant to a cooperative research and development agreement (CRADA) with Jupiter Oxygen Corporation, ARC currently is studying the IPR process as applied to the oxygen fuel technology developed by Jupiter. As discussed further below, these two new technologies are complementary. This interim report summarizes the study results to date and outlines the potential activities under the next phase of the CRADA with Jupiter.
Date: September 13, 2004
Creator: Turner, Paul C. & Schoenfield, Mark (Jupiter Oxygen Corp.)
Partner: UNT Libraries Government Documents Department

Oxidation of alloys for advanced steam turbines

Description: Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.
Date: January 1, 2005
Creator: Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D. & Ziomek-Moroz, M.
Partner: UNT Libraries Government Documents Department

Oxidation of alloys for advanced steam turbines

Description: Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.
Date: January 1, 2005
Creator: Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M. & Alman, David E.
Partner: UNT Libraries Government Documents Department

Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

Description: The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. of Cambridge, Massachusetts, to implement and study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating control systems in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded.
Date: October 1, 2013
Creator: Dentz, J.; Henderson, H. & Varshney, K.
Partner: UNT Libraries Government Documents Department