748 Matching Results

Search Results

Advanced search parameters have been applied.

Biodegradable Poly(hydroxy Butyrate-co-valerate) Nanocomposites And Blends With Poly(butylene Adipate-co-terephthalate) For Sensor Applications

Description: The utilization of biodegradable polymers is critical for developing “cradle to cradle” mindset with ecological, social and economic consequences. Poly(hydroxy butyrate-co-valerate) (PHBV) shows significant potential for many applications with a polypropylene equivalent mechanical performance. However, it has limitations including high crystallinity, brittleness, small processing window, etc. which need to be overcome before converting them into useful products. Further the development of biodegradable strain sensing polymer sensors for structural health monitoring has been a growing need. In this dissertation I utilize carbon nanotubes as a self sensing dispersed nanofiller. The impact of its addition on PHBV and a blend of PHBV with poly(butylene adipate-co-terephthalate) (PBAT) polymer was examined. Nanocomposites and blends of PHBV, PBAT, and MWCNTs were prepared by melt-blending. The effect of MWCNTs on PHBV crystallinity, crystalline phase, quasi-static and dynamic mechanical property was studied concurrently with piezoresistive response. In PHBV/PBAT blends a rare phenomenon of melting point elevation by the addition of low melting point PBAT was observed. The blends of these two semicrystalline aliphatic and aromatic polyesters were investigated by using differential scanning calorimetry, small angle X-ray scattering, dynamic mechanical analysis, surface energy measurement by contact angle method, polarized optical and scanning electron microscopy, and rheology. The study revealed a transition of immiscible blend compositions to miscible blend compositions across the 0-100 composition range. PHBV10, 20, and 30 were determined to be miscible blends based on a single Tg and rheological properties. The inter-relation between stress, strain, morphological structure and piezoresistive response of MWCNT filled PHBV and PHBV/PBAT blend system was thoroughly investigated. The outcomes of piezoreistivity study indicated MWCNT filled PHBV and PHBV/PBAT blend system as a viable technology for structural health monitoring. Finally, the compostability of pure polymer, blend system, and MWCNT filled system was studied indicating that PBAT and CNT decreased the biodegradability of PHBV ...
Date: December 2011
Creator: Vidhate, Shailesh.
Partner: UNT Libraries

Thermophysical, Interfacial and Decomposition Analyses of Polyhydroxyalkanoates introduced against Organic and Inorganic Surfaces

Description: The development of a "cradle-to-cradle" mindset with both material performance during utilization and end of life disposal is a critical need for both ecological and economic considerations. The main limitation to the use of the biopolymers is their mechanical properties. Reinforcements are therefore a good alternative but disposal concerns then arise. Thus the objective of this dissertation is to investigate a biopolymer nanocomposite where the filler is a synthetically prepared layer double hydroxide (inorganic interface); and a biopolymer paper (organic interface) based coating or laminate. The underlying issues driving performance are the packing density of the biopolymer and the interaction with the reinforcement. Since the polyhydroxyalkanoates or PHAs (the biopolymers used for the manufacture of the nanocomposites and coatings) are semicrystalline materials, the glass transition was investigated using dynamic mechanical analysis (DMA) and dielectric spectroscopy (DES), whereas the melt crystallization, cold crystallization and melting points were investigated using differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) spectroscopy was used to estimate crystallinity in the coated material given the low thermal mass of the PHA in the PHA coating. The significant enhancement of the crystallization rate in the PHA nanocomposite was probed using DSC and polarized optical microscopy (POM) and analyzed using Avrami and Lauritzen-Hoffman models. Both composites showed a significant improvement in the mechanical performance obtained by DMA, tensile and impact testing. The degradation and decomposition of the two composites were investigated in low microbial activity soil for the cellulose paper (to slow down the degradation rate that occurs in compost) and in compost. An in-house system according to the American Society for Testing and Materials ASTM D-98 (2003) was engineered. Soil decomposition showed that PHA coating into and onto the cellulose paper can be considered to be a useful method for the assessment of the degradability of the biopolymer. ...
Date: December 2009
Creator: Dagnon, Koffi Leonard
Partner: UNT Libraries

Determination of Biotransformation and Biodegradation Rate Constants for Naphthalene, Lindane and Phenol

Description: Biotransformation and biodegradation rate constants were determined for naphthalene, lindane, and phenol in water samples from three different sources. Rate constants produced from monitoring disappearance of the parent chemical (biotransformation) were compared to those obtained from mineralization of the chemical (ultimate biodegradation) by ¹⁴CO₂ evolution as well as acidification of the residual ¹⁴C-labeled compound (primary biodegradation). Rate constants were statistically different for the three chemicals. The water source affected the rate constants. When biomass measurements of the waters were considered and second-order rate constants were derived, there was no statistical evidence that this parameter gave a reliable rate constant statistic that could be useful in predicting the fate of any of naphthalene, lindane, and phenol in these waters.
Date: December 1981
Creator: Crawford, Judith Chase
Partner: UNT Libraries

Modeling Biodegradation and Reactive Transport: Analytical and Numerical Models

Description: The computational modeling of the biodegradation of contaminated groundwater systems accounting for biochemical reactions coupled to contaminant transport is a valuable tool for both the field engineer/planner with limited computational resources and the expert computational researcher less constrained by time and computer power. There exists several analytical and numerical computer models that have been and are being developed to cover the practical needs put forth by users to fulfill this spectrum of computational demands. Generally, analytical models provide rapid and convenient screening tools running on very limited computational power, while numerical models can provide more detailed information with consequent requirements of greater computational time and effort. While these analytical and numerical computer models can provide accurate and adequate information to produce defensible remediation strategies, decisions based on inadequate modeling output or on over-analysis can have costly and risky consequences. In this chapter we consider both analytical and numerical modeling approaches to biodegradation and reactive transport. Both approaches are discussed and analyzed in terms of achieving bioremediation goals, recognizing that there is always a tradeoff between computational cost and the resolution of simulated systems.
Date: June 9, 2005
Creator: Sun, Y & Glascoe, L
Partner: UNT Libraries Government Documents Department

Bioremediation of Petroleum Hydrocarbons in Heterogeneous Soils

Description: Western Research Institute (WRI) in conjunction with the University of Wyoming, Department of Renewable Resources and the U.S. Department of Energy, under Task 35, conducted a laboratory-scale study of hydrocarbon biodegradation rates versus a variety of physical and chemical parameters to develop a base model. By using this model, biodegradation of Petroleum hydrocarbons in heterogeneous soils can be predicted. The base model, as developed in this study, have been tested by both field and laboratory data. Temperature, pH, and nutrients appear to be the key parameters that can be incorporate into the model to predict biodegradation rates. Results to date show the effect of soil texture and source on the role of each parameter in the rates of hydrocarbon biodegradation. Derived from the existing study, an alternative approach of using CO{sub 2} accumulation data has been attempted by our collaborators at the University of Wyoming. The model has been modified and fine tuned by incorporating these data to provide more information on biodegradation.
Date: March 2, 2006
Creator: Jin, Song; Fallgren, Paul & Brown, Terry
Partner: UNT Libraries Government Documents Department

Alfalfa hay storage losses study as influenced by bale type and storage method. Quarterly report, July 1, 1997--September 30, 1997

Description: This experiment was conducted in cooperation with the Minnesota Alfalfa Producers (MnVAP) cooperative. Alfalfa for use as both a biomass energy source and as a protein supplement has been proposed by MnVAP. Research has shown that alfalfa deteriorates over time in storage, and that storage method and bale type affect the amount of deterioration. Therefore, evaluation of different storage methods and bale types on dry matter and quality losses of alfalfa leaf and stem components is important information for the alfalfa grower and the MnVAP cooperative. Two bale types were evaluated for four storage methods, and measurements were made of initial and final bale weights, dry matter, leaf and stem components, and forage quality estimates. Few differences were detected among bale types for dry matter losses, and interactions among bale type and storage method were not detected. This indicates that dry matter losses were similar for different bale types regardless of the storage method. However, differences in dry matter losses and visible spoilage were detected among storage methods. No interactions between bale type and storage method were detected for forage quality parameters, indicating that forage quality losses as a result of storage were similar for different bale types. Bale type by sample type and storage method by sample type interactions were detected. Many of these were the result of poorer quality alfalfa. 4 refs., 9 tabs.
Date: October 30, 1997
Creator: Cuomo, G.; Sheaffer, C. & Martin, N.
Partner: UNT Libraries Government Documents Department

Efficient on-site degradation of high concentration of spent deicing fluids: A laboratory study. Final report

Description: The on-site treatment of antifreeze compounds and aircraft deicing fluids (ethylene glycol and propylene glycol) will reduce disposal costs, decrease environmental impact, minimize the potential for additional spills/contamination and meet the goals of pollution prevention by reducing the amount of hazardous materials generated. The authors have identified bacteria that can degrade 1-10% glycol waste at room temperatures of ca. 23C. A second subculture was isolated that could degrade glycol waste at ca. 4C.
Date: October 1, 1997
Creator: Strong, J.M. & Waltz, M.
Partner: UNT Libraries Government Documents Department

Bioprocessing of crude oils and desulfurization using electro-spray reactors

Description: Biological removal of organic sulfur from petroleum feedstocks offers an attractive alternative to conventional thermochemical treatment due to the mild operating conditions afforded by the biocatalyst. Electro-spray bioreactors were investigated for use in desulfurization due to their reported operational cost savings relative to mechanically agitated reactors and their capability of forming emulsions < 5 {micro}m. Here, the rates dibenzothiophene (DBT) oxidation to 2-hydroxybiphenyl (2-HBP) in hexadecane, by Rhodococcus sp. IGTS8 are compared in the two reactor systems. Desulfurization rates ranged from 1.0 and 5.0 mg 2-HBP/(dry g cells-h), independent of the reactor employed. The batch stirred reactor was capable of forming a very fine emulsion in the presence of the biocatalyst IGTS8, similar to that formed in the electro-spray reactors, presumably due to the fact that the biocatalyst produces its own surfactant. While electro-spray reactors did not prove to be advantageous for the IGTS8 desulfurization system, it may prove advantageous for systems which do not produce surface-active bioagents in addition to being mass transport limited.
Date: July 1, 1998
Creator: Kaufman, E. N. & Borole, A. P.
Partner: UNT Libraries Government Documents Department

Induced biochemical interactions in immature and biodegraded heavy crude oils

Description: Studies in which selective chemical markers have been used to explore the mechanisms by which biocatalysts interact with heavy crude oils have shown that the biochemical reactions follow distinct trends. The term biocatalyst refers to a group of extremophilic microorganisms which, under the experimental conditions used, interact with heavy crude oils to (1) cause a redistribution of hydrocarbons, (2) cause chemical changes in oil fractions containing sulfur compounds and lower the sulfur content, (3) decrease organic nitrogen content, and (4) decrease the concentration of trace metals. Current data indicate that the overall effect is due to simultaneous reactions yielding products with relatively higher concentration of saturates and lower concentrations of aromatics and resins. The compositional changes depend on the microbial species and the chemistry of the crudes. Economic analysis of a potential technology based on the available data indicate that such a technology, used in a pre-refinery mode, may be cost efficient and promising. In the present paper, the background of oil biocatalysis and some recent results will be discussed.
Date: November 1, 1998
Creator: Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Shelenkova, L. & Zhou, W.M.
Partner: UNT Libraries Government Documents Department

Life that really is down under

Description: The story begins in the early 1980`s, when it was recognized that fundamental science about deep aquifers (greater than 30 feet below the surface) was virtually non existent. If population centers were to continue to expand, the understanding of these deep reservoirs of life-giving water was essential. Over 53% of the US population receives its drinking water from wells, yet these sources continue to be polluted by government, industrial and private sources. If microorganism, life too small to be seen except through powerful microscopes, were present underground, then maybe they could help return polluted groundwaters to wholesome quality. Such was the vision in the Office of Health and Environmental Research at DOE that spawned the Microbiology of the Deep Subsurface Program.
Date: Spring 1988
Creator: Fliermans, C.
Partner: UNT Libraries Government Documents Department

The Removal of Linseed Oil Vapors by Biodegradation

Description: Linseed oil is very important in industry but its use is limited due to noxious vapors produced by oxidation on exposure to air. Since some of the products are toxic, release of linseed oil vapors to the environment is normally prohibited. In order to remove the odorous compounds, a biofilter system based on bacterial metabolism was designed and the major premises of bioremediation were studied. A total of five bacterial strains capable of using linseed oil vapors as their sources of carbon and energy were isolated from soil. The individual organisms were also mixed to form a bacterial consortium. The mixed population was able to degrade linseed oil vapors with more than 99 per cent efficiency. According to this research, a successful biodegradation system was designed and, theoretically, this system could be applied to the removal of linseed oil vapors in any industrial plant air stream.
Date: August 1996
Creator: Sukplang, Patamaporn
Partner: UNT Libraries

Bioreactor Landfill Cell Feasibility Study ' Reference to City of Denton Subtitle-D Permit #1590A Landfill

Description: The City of Denton Landfill, Permit #1590A, utilizes “Dry-Tomb” techniques for disposal and promotion of municipal solid waste stabilization, as described by the Resource Conservation and Recovery Act (RCRA) prohibition in 40 CFR. Bioreactor research suggests re-circulating leachate increases biodegradation rates and reduces long-term monitoring from fifty years to less than ten years. Current procedures that are followed at Denton's landfill, literature review and the use of the Hydrologic Evaluation of Landfill Performance (HELP) model, suggest that a bioreactor landfill cell is worthy of further research. Re-circulating leachate and augmenting it with additional liquid will increase biodegradation and the need to design and build a landfill gas collection system to capture methane for energy recovery uses.
Date: May 2002
Creator: Roberts, Elizabeth
Partner: UNT Libraries

Understanding Microbial Biodegradation of Environmental Contaminants

Description: The accumulation of industrial contaminants in the natural environments have rapidly become a serious threat for human and animal life. Fortunately, there are microorganisms capable of degrading or transforming environmental contaminants. The present dissertation work aimed to understand the genomic basis of microbial degradation and resistance. The focus was the genomic study of the following bacteria: a) Pseudomonas fluorescens NCIMB 11764, a unique bacterium with specific enzymes that allow cyanide adaptation features. Potential cyanide degradation mechanisms found in this strain included nit1C cluster, and CNO complex. Potential cyanide tolerance genes found included cyanide insensitive oxidases, nitric oxide producing gene, and iron metabolism genes. b) Cupriavidus sp. strain SK-3 and strain SK-4. The genome of both bacteria presented the bph operon for polychlorinated biphenyl (PCB) degradation, but we found differences in the sequences of the genes. Those differences might indicate their preferences for different PCB substrates. c) Arsenic resistant bacterial communities observed in the Atacama Desert. Specific bacteria were found to thrive depending on the arsenic concentration. Examples were Bacteroidetes and Spirochaetes phyla whose proportions increased in the river with high arsenic concentrations. Also, DNA repair and replication metabolic functions seem to be necessary for resistance to arsenic contaminated environments. Our research give us insights on how bacteria communities, not just individually, can adapt and become resistant to the contaminants. The present dissertation work showed specific genes and mechanisms for degradation and resistance of contaminants that could contribute to develop new bioremediation strategies.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2015
Creator: Vilo Muñoz, Claudia Andrea
Partner: UNT Libraries

In Vitro Determination of the Cellulose-Decomposing Rates of Twelve Denton County, Texas Soils

Description: In this study twelve types of top soil were collected under aseptic conditions. The cellulose-decomposing rates of these were compared in order to determine the relative rates in the cellulose-decomposing potential of the microorganisms involved. Furthermore, this investigation is designed to acquire pertinent information on the rate at which natural cellulose materials are returned to available plant food.
Date: 1950
Creator: Heather, Carl D.
Partner: UNT Libraries

ENHANCED BIOREMEDIATION OF COAL - TAR-CONTAMINATED SOIL. INCLUDES THE SEMIANNUAL REPORT FOR THE PERIOD JANUARY 01, 1998 - JUNE 30, 1998.

Description: Under the conditions used in these experiments, the use of low-level energy acoustic energy did not result in improvements in the biodegradation of PAHs in a PAH-contaminated soil compared to an untreated control. Expected impacts on biodegradation rates by the acoustic energy could not be evaluated as the data were not conducive to this determination. The acoustic energy was only supplied to the treated samples during 10 minutes per day (0.6944 % of a day). It is possible that using longer treatment times, more exposure to the acoustic energy, and alternate types of contamination might have been able to demonstrate the purported ability of acoustic energy to desorb nonpolar contaminants and improve their biodegradation rate and endpoint.
Date: October 1, 1998
Partner: UNT Libraries Government Documents Department

Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor

Description: The need to control gas and leachate production and minimize refuse volume in municipal solid waste landfills has motivated the development of landfill simulation models to predict and design optimal treatment processes. We have developed a multiphase and multicomponent nonisothermal module called T2LBM for the three-dimensional TOUGH2 flow and transport simulator. T2LBM can be used to simulate aerobic or anaerobic biodegradation of municipal solid waste and the associated flow and transport of gas and liquid through the refuse mass. Acetic acid is used as a proxy for all biodegradable substrates in the refuse. T2LBM incorporates a Monod kinetic rate law for the biodegradation of acetic acid by either aerobic or anaerobic microbes as controlled by the local oxygen concentration. We have verified the model against published data, and applied it to our own mesoscale laboratory aerobic landfill bioreactor experiments. We observe spatial variability of flow and biodegradation consistent with permeability heterogeneity and the geometry of the radial grid. The model is capable of matching results of a shut-in test where the respiration of the system is measured over time.
Date: February 1, 2002
Creator: Oldenburg, Curtis M.; Borglin, Sharon E. & Hazen, Terry C.
Partner: UNT Libraries Government Documents Department

Design and Validation of an Automated Multiunit Composting System.

Description: This thesis covers the design of an automated multiunit composting system (AMUCS) that was constructed to meet the experimental apparatus requirements of the ASTM D5338 standard. The design of the AMUCS is discussed in full detail and validated with two experiments. The first experiment was used to validate the operation of the AMUCS with a 15 day experiment. During this experiment visual observations were made to visually observe degradation. Thermal properties and stability tests were performed to quantify the effects of degradation on the polymer samples, and the carbon metabolized from the degradation of samples was measured. The second experiment used the AMUCS to determine the effect of synthetic clay nanofiller on the aerobic biodegradability behavior of poly (3-hydroxybutyrate-co-3-hydroxyvalerate).
Date: December 2009
Creator: Pickens, Mark Everett
Partner: UNT Libraries

Reductive dissolution and metal transport in lake coeur d alenesediments

Description: The benthic sediments in Lake Coeur d Alene, northern Idaho,have been contaminated by metals (primarily Zn, Pb, and Cu) from decadesof upstream mining activities. As part of ongoing research on thebiogeo-chemical cycling of metals in this area, a diffusivereactive-transport model has been developed to simulate metal transportin the lake sediments. The model includes 1-D inorganic diffusivetransport coupled to a biotic reaction network with multiple terminalelectron acceptors under redox disequilibrium conditions. Here, the modelis applied to evaluate the competing effects of heavy-metal mobilizationthrough biotic reductive dissolution of Fe(III) (hydr)oxides, andimmobilization as biogenic sulfide minerals. Results indicate that therelative rates of Fe and sulfate reduction could play an important rolein metal transport through the envi-ronment, and that the formation of(bi)sulfide complexes could significantly enhance metal solubility, aswell as desorption from Fe hydroxides.
Date: April 27, 2007
Creator: Sengor, Sevinc.S.; Spycher, Nicolas.F.; Ginn, Timothy.R.; Moberly, James; Peyton, B. & Sani, Rajesh.K.
Partner: UNT Libraries Government Documents Department

Monitored Natural Attenuation and Enhanced Attenuation for Chlorinated Solvent Plumes - It’s All About Balance

Description: Nature's inherent ability to cleanse itself is at the heart of Monitored Natural Attenuation (MNA). The complexity comes when one attempts to measure and calculate this inherent ability, called the Natural Attenuation Capacity (NAC), and determine if it is sufficient to cleanse the system to agreed upon criteria. An approach that is simple in concept for determining whether the NAC is sufficient for MNA to work is the concept of a mass balance. Mass balance is a robust framework upon which all decisions can be made. The inflows to and outflows from the system are balanced against the NAC of the subsurface system. For MNA to be acceptable, the NAC is balanced against the contaminant loading to the subsurface system with the resulting outflow from the system being in a range that is acceptable to the regulating and decision-making parties. When the system is such that the resulting outflow is not within an acceptable range, the idea of taking actions that are sustainable and that will bring the system within the acceptable range of outflows is evaluated. These sustainable enhancements are being developed under the Enhanced Attenuation (EA) concept.
Date: May 19, 2005
Creator: VANGELAS, KAREN
Partner: UNT Libraries Government Documents Department

Annual Post-Closure Inspection and Monitoring Report for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill, Nevada Test Site, Nevada, Rev. No.: 0

Description: This report presents the data collected during field activities and quarterly soil-gas sampling activities conducted from May 9, 2005, through May 20, 2006, at Corrective Action Unit (CAU) 329, Area 22 Desert Rock Airstrip (DRA) Fuel Spill; Corrective Action Site (CAS) 22-44-01, Fuel Spill. The CAU is located at the DRA, which is located approximately two miles southwest of Mercury, Nevada, as shown in Figure 1-1. Field activities were conducted in accordance with the revised sampling approach outlined in the Addendum to the Closure Report (CR) for CAU 329 (NNSA/NSO, 2005) to support data collection requirements. The previous annual monitoring program for CAU 329 was initiated in August 2000 using soil-gas samples collected from three specific intervals at the DRA-0 and DRA-3 monitoring wells. Results of four sampling events from 2000 through 2003 indicated there is uncertainty in the approach to establish a rate of natural attenuation as specified in ''Streamlined Approach for Environmental Restoration (SAFER) Work Plan for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill, Nevada Test Site, Nevada'' (DOE/NV, 1999). As a result, the Addendum to the CR (NNSA/NSO, 2005) was completed to address this uncertainty by modifying the previous approach. A risk evaluation was added to the scope of the project to determine if the residual concentration of the hazardous constituents of JP4 pose an unacceptable risk to human health or the environment and if a corrective action was required at the site, because the current quarterly monitoring program is not expected to yield a rate constant that could be used effectively to determine a biodegradation rate for total petroleum hydrocarbons (TPH) in less than the initial five years outlined in the CR. Additionally, remediation to the Tier 1 action level for TPH is not practical or technically feasible due to the depth ...
Date: September 1, 2006
Creator: Wickline, Alfred
Partner: UNT Libraries Government Documents Department

Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste

Description: Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial activity on concrete surfaces are discussed.
Date: October 15, 2012
Creator: Turick, C & Berry, C.
Partner: UNT Libraries Government Documents Department

BIODEGRADATION OF PETROLEUM-WASTE BY BIOSURFACTANT-PRODUCING BACTERIA

Description: The degradation of petroleum waste by mixed bacterial cultures which produce biosurfactants: Ralstonia pickettii SRS (BP-20), Alcaligenes piechaudii SRS (CZOR L-1B), Bacillus subtilis (1'- 1a), Bacillus sp. (T-1) and Bacillus sp. (T'-1) was investigated. The total petroleum hydrocarbons were degraded substantially (91 %) by the mixed bacterial culture in 30 days (reaching up to 29 % in the first 72 h). Similarly, the toxicity of the biodegraded petroleum waste decreased 3 times after 30 days as compared to raw petroleum waste. Thus, the mixed bacterial strains effectively clean-up the petroleum waste and they can be used in other bioremediation processes.
Date: May 16, 2007
Creator: Brigmon, R.; Grazyna A. Plaza, G; Kamlesh Jangid, K.; Krystyna Lukasik, K; Grzegorz Nalecz-Jawecki, G & Topher Berry, T
Partner: UNT Libraries Government Documents Department

Compostable Soy-Based Polyurethane Foam with Kenaf Core Modifiers

Description: Building waste and disposable packaging are a major component in today's landfills. Most of these are structural or thermally insulative polymer foams that do not degrade over a long period of time. Currently, there is a push to replace these foams with thermoplastic or biodegradable foams that can either be recycled or composted. We propose the use of compostable soy-based polyurethane foams (PU) with kenaf core modifiers that will offer the desired properties with the ability to choose responsible end-of-life decisions. The effect of fillers is a critical parameter in investigating the thermal and mechanical properties along with its effect on biodegradability. In this work, foams with 5%, 10%, and 15% kenaf core content were created. Two manufacturing approaches were used: the free foaming used by spray techniques and the constrained expansion complementary to a mold cavity. Structure-property relations were examined using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermal conductivity, compression values, scanning electron microscopy (SEM), x-ray micro-computed tomography (micro-CT), and automated multiunit composting system (AMCS). The results show that mechanical properties are reduced with the introduction of kenaf core reinforcement while thermal conductivity and biodegradability display a noticeable improvement. This shows that in application properties can be improved while establishing a responsible end-of-life choice.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Hoyt, Zachary
Partner: UNT Libraries