594 Matching Results

Search Results

Advanced search parameters have been applied.

Desorption/Diffusion of Benzene After Simulated Ground Water Remediation

Description: A study was undertaken to examine the desorption/ iffusion of benzene after simulated ground water remediation in aquifer material of differing carbon content using column experiments and comparing the results to batch experiments and adsorption empirical relationships. It was hypothesized that the organic carbon of the aquifer material will affect desorption/diffusion. Results from the column experiment indicated no significant difference in the increase benzene concentrations after remediation between aquifer materials of differing carbon content, however, a significant increase in benzene concentration was observed for all aquifer material. Fair agreement of retardation factors was observed between empirical relationships and batch and column experiments. However, the desorption phase of the batch experiment showed hysteresis and seemed to differ from the column experiment.
Date: December 1989
Creator: Bennett, Kathryn C. (Kathryn Condreay)
Partner: UNT Libraries

ITP Filtrate Benzene Removal Alternatives

Description: Existing ITP filtrate hold tanks may provide sufficient capacity and residence time to strip dissolved benzene from the incoming filtrate using nitrogen sparging in the bottom of the old tanks. This is based on equilibrium supported by late Wash test data using aged washed slurry. Theoretical considerations indicate that benzene stripping will be more difficult from the ITP unwashed high salt filtrates due to reduced mass transfer. Therefore experimental sparging data is needed to quantify the theoretical effects.Foaming limits which dictate allowable sparging rate will also have to be established. Sparging in the hold tanks will require installation of sintered metal spargers, and possibly stirrers and foam monitoring/disengagement equipment. The most critical sparging needs are at the start of the precipitation/concentration cycle, when the filtrate flux rate is the highest,and at the end of wash cycle where Henry`s equilibrium constant falls off,requiring more gas to sparge the dissolved benzene. With adequate recycle (for proper distribution) or sparging in the old tanks, the 30 inch column could be used for the complete ITP process. A courser packing would reduce back pressure while enabling benzene stripping. The Late Wash Tests indicate adequate benzene stripping even at reduced gas flow. This will require experimental verification under ITP conditions. Using the 30 in. column vs 18 in. during the wash cycle will enhance stripping without need for additional sparging provided the minimum flow requirements are met.
Date: May 21, 1993
Creator: Dworjanyn, L.O.
Partner: UNT Libraries Government Documents Department

Study of Substituted Benzenesulfonate-Containing Layered Double Hydroxides and Investigation of the Hexamethylenetetramine Route of LDH Synthesis

Description: Benzenesulfonates, para-substituted with amine, chloride and methyl groups were successfully incorporated into layered double hydroxides of two different compositions, 2:1 Mg-Al LDH and 2:1 Zn-Al LDH. These parent materials were also doped with small amounts of nickel and the differences in the two systems were studied. The hexamethylenetetramine route of layered double hydroxide synthesis was investigated to verify if the mechanism is indeed homogeneous. This included attempting preparation of 2:1 Mg-Al LDH, 2:1 Zn-Al LDH and 2:1 Zn-Cr LDH with two different concentrations of hexamethylenetetramine. The analytical data of the products suggest that the homogeneous precipitation may not be the true mechanism of reaction involved in LDH synthesis by this method.
Date: May 2007
Creator: Ambadapadi, Sriram
Partner: UNT Libraries

Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics

Description: Low temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165 and 295 K is found to be relatively constant over this temperature range, 3.9 - 4.9 x 10-10 cm3 molecule-1 s-1. These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a slower rate coefficient of 1.3 x 10-10 cm3 molecule-1 s-1 at 105 K. At room temperature, non-exponential decay profiles are observed for this reaction that may suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C6H5CN) is the only product recorded with no detectable evidence for a C6H5 + HCN product channel. In the case of CN + toluene, cyanotoluene (NCC6H4CH3) constitutes the only detected product. It is not possible to differentiate among the ortho, meta and para isomers of cyanotoluene because of their similar ionization energies and the ~;; 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C6H5CH2) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn?s moon Titan (~;;100 K) and are also likely to proceed at the temperature of interstellar clouds (10-20 K).
Date: December 23, 2009
Creator: Trevitt, Adam J.; Goulay, Fabien; Taatjes, Craig A.; Osborn, David L. & Leone, Stephen R.
Partner: UNT Libraries Government Documents Department

Exposure to motor vehicle emissions: An intake fraction approach

Description: Motor vehicles are a significant source of population exposure to air pollution. Focusing on California's South Coast Air Basin as a case study, the author combines ambient monitoring station data with hourly time-activity patterns to determine the population intake of motor vehicle emissions during 1996-1999. Three microenvironments are considered wherein the exposure to motor vehicle emissions is higher than in ambient air: in and near vehicles, inside a building that is near a freeway, and inside a residence with an attached garage. Total motor vehicle emissions are taken from the EMFAC model. The 15 million people in the South Coast inhale 0.0048% of primary, nonreactive compounds emitted into the basin by motor vehicles. Intake of motor vehicle emissions is 46% higher than the average ambient concentration times the average breathing rate, because of microenvironments and because of temporal and spatial correlation among breathing rates, concentrations, and population densities. Intake fraction (iF) summarizes the emissions-to-intake relationship as the ratio of population intake to total emissions. iF is a population level exposure metric that incorporates spatial, temporal, and interindividual variability in exposures. iFs can facilitate the calculation of population exposures by distilling complex emissions-transport-receptor relationships. The author demonstrates this point by predicting the population intake of various primary gaseous emissions from motor vehicles, based on the intake fraction for benzene and carbon monoxide.
Date: May 1, 2002
Creator: Marshall, Julian D.
Partner: UNT Libraries Government Documents Department

Energetics and kinetics of anaerobic aromatic and fatty acid degradation. Progress report, March 1992--June 1995

Description: Factors affecting the rate and extent of benzoate degradation by anaerobic syntrophic consortia were studied. Cocultures of a syntrophic benzoate degrader, strain SB, with a hydrogen/formate-using sulfate reducer degraded benzoate to a threshold that depended on the amount of substrate and acetate present. The benzoate threshold was not a function of the inhibition of benzoate degradation capacity by acetate or the toxicity of the undissociated form of acetate. Rather, a critical or minimal Gibb`s free energy value may exist where thermodynamic constraints preclude further benzoate degradation. A sensitive assay to detect low formate concentrations was developed to measure the formate levels when the benzoate threshold was reached. We showed that increased acetate concentrations, even when hydrogen and formate levels are low, affects the extent of benzoate degradation, implicating the importance of interspecies acetate transfer. In addition to benzoate, various saturated and unsaturated fatty acids, 2-methylbutyrate, and methyl esters of fatty acids supported growth in coculture with a hydrogen-using partner. SB is the only syntrophic bacterium known to use both benzoate and fatty acids. Phylogenetic analysis showed that SB clustered with sulfate reducers in the delta subclass of the Proteobacteria. SB grew well in coculture with Desulfoarculus baarsii, a sulfate reducer that uses formate but not hydrogen. This unequivocally shows that SB can grow by interspecies formate transfer.
Date: June 23, 1995
Creator: M.J., McInerney
Partner: UNT Libraries Government Documents Department

Evaluating Defoaming Agents for the Stripping Columns at the In-Tank Precipitation Facility

Description: The In-Tank Precipitation (ITP) process will concentrate the Tank 48 contents to approximately 10 wt. percent tetraphenylborate solids by filtration. The filtrate produced during the process flows to the ITP stripping columns where the soluble benzene is removed from the solution. It has been observed that a large pressure differential occurs across the column packing when the filtrate is processed in the column. One potential explanation for the pressure differential is that the filtrate is foaming in the column. Small scale stripping tests have verified that the salt solution foams. Waste Management requested assistance from SRTC in solving the foaming problem through technical task requests HLE-TTR-93013A/B (Benzene Stripper Performance Evaluation) and HLE-TTR-93044 (Kinetics of Benzene and Dissolution). Various tests were completed to determine an effective defoaming agent for use in the stripping columns. This document discusses the tests and the conclusions.
Date: June 30, 1993
Creator: McGlynn, J.F.
Partner: UNT Libraries Government Documents Department

Tetraphenylborate Solids Stability Tests

Description: Tetraphenylborate solids provide a potentially large source of benzene in the slurries produced in the In-Tank Precipitation process. The stability of the solids is an important consideration in the safety analysis of the process and we desire an understanding of the factors that influence the rate of conversion of the solids to benzene.
Date: December 19, 1997
Creator: Walker, D.D. & Edwards, T.B.
Partner: UNT Libraries Government Documents Department

ITP Materials Compatibility Issues

Description: Based on information provided by ITP, normal operation will consist of controlled exposure to benzene and TBP concentrations of 300 and 100 ppm, respectively, in an approximate 5M NaOH solution at temperatures as high as 50 degrees C. Other compounds present in the filtrate solution were much lower in concentration and were not tested. In addition, levels as high as 1000 ppm benzene or TBP may be reached. It is assumed that the TBP will be maintained at a constant concentration to control foaming behavior.
Date: September 1, 1998
Creator: Skidmore, T.E.
Partner: UNT Libraries Government Documents Department

Benzene release. status report

Description: Scoping benzene release measurements were conducted on 4 wt percent KTPB `DEMO` formulation slurry using a round, flat bottomed 100-mL flask containing 75 mL slurry. The slurry was agitated with a magnetic stirrer bar to keep the surface refreshed without creating a vortex. Benzene release measurements were made by purging the vapor space at a constant rate and analyzing for benzene by gas chromatography with automatic data acquisition. Some of the data have been rounded or simplified in view of the scoping nature of this study.
Date: November 4, 1997
Creator: Dworjanyn, L.O.; Rappe, K.G. & Gauglitz, P.A.
Partner: UNT Libraries Government Documents Department

Apparent Benzene Solubility in Tetraphenylborate Slurries

Description: Personnel conducted testing to determine the apparent solubility of benzene in potassium tetraphenylborate (KTPB) slurries. The lack of benzene vapor pressure suppression in these tests indicate that for a 6.5 wt percent solids KTPB slurry in 4.65 M Na+ salt solution at approximately 25 degrees Celsius, no significant difference exists between the solubility of benzene in the slurry and the solubility of benzene in salt solution without KTPB solids. The work showed similar results in slurry with 6,000 mg/L sludge and 2,000 mg/L monosodium titanate added. Slurries containing tetraphenylborate decomposition intermediates (i.e., 4,200 mg/L triphenylboron (3PB), 510 mg/L diphenylborinic acid (2PB) and 1,500 mg/L phenylboric acid (1PB) or 100 mg/L tri-n-butylphosphate (TBP)) also showed no significant difference in benzene solubility form filtrate containing no KTPB solids. Slurry containing 2,000 mg/L Surfynol 420 did exhibit significant additional benzene solubility, as did irradiated slurries. The vapor pressure depression in the irradiated slurries presumably results from dissolution of biphenyl and other tetraphenylborate irradiation products in the benzene.
Date: November 1, 1997
Creator: Swingle, R.F.; Peterson, R.A. & Crawford, C.L.
Partner: UNT Libraries Government Documents Department

Tributylphosphate in the In-Tank Precipitation Process Facilities

Description: A material balance investigation and evaluation of n- tributylphosphate (TBP) recycle throughout ITP and its carryover to Defense Waste Processing Facility (DWPF) was performed. Criticality and DWPF-related issues were determined to pose no adverse consequences due to TBP addition. Effects of decomposition products were also considered. Flammability of 1-butanol, a TBP decomposition product, in Tank 22 was investigated. Calculations show that Tank 22 would be ventilated with air at a rate sufficient to maintain a 1-butanol concentration (volume percent) well below 25 percent of the lower flammability limit (LFL) for 1-butanol.
Date: November 23, 1993
Creator: Barnes, M.J.; Hobbs, D.T. & Swingle, R.F.
Partner: UNT Libraries Government Documents Department

The state of benzene in TIP slurry using nuclear magnetic resonance measurements

Description: Nuclear Magnetic Resonance (NMR) measurements on In-Tank Precipitation (ITP) simulated potassium tetraphenylborate (KTPB) slurries at Pacific Northwest National Laboratory have been completed. Most measurements were made on 4 wt percent KTPB slurry in 4 to 5 molar sodium salt solution. Liquid benzene was added volumetrically to the slurry in 25-mL vials and agitated to create a suspension. Earlier tests using dyed benzene showed that benzene remains suspended permanently in the slurry and the only visible change is overall slurry settling. Gentle vial agitation restores the original suspension state. To simulate in-situ uniformly dispersed benzene, benzene/KTPB samples were homogenized using a high speed rotor/stator biological homogenizer. Photomicrographs using homogenized samples containing dyed benzene showed no residual benzene droplets and fairly uniform coloration of the KTPB solids structure. All benzene concentration estimates are based on benzene addition since there is no available analytical method for benzene in slurry. Benzene losses could be significant, particularly at low concentrations and during homogenization.
Date: November 14, 1997
Creator: Dworjanyn, L.O.
Partner: UNT Libraries Government Documents Department

Multiphoton ionization of ions, neutrals, and clusters. Progress report

Description: Scientific results are summarized from a three year research program on multiphoton ionization in aromatic molecules, clusters, and their ions. As originally proposed, the studies elucidated a new cluster ionization mechanism, characterized properties of long range intermolecular interactions, and investigated electronic transitions of aromatic cations cooled in a supersonic beam. The studies indicate that the new cluster ionization mechanism is highly efficient and dominates conventional 1 + 1 resonant ionization. In the case of the dimer of the large aromatic molecule fluorene, the results suggest that excimer formation competes with a direct ionization process. Highly selective excitonic spectra have been identified for several cluster species.
Date: June 28, 1991
Creator: Wessel, J.
Partner: UNT Libraries Government Documents Department

Orthogonal spectra and cross sections: Application to optimization of multi-spectral absorption and fluorescence lidar

Description: This report addresses the problem of selection of lidar parameters, namely wavelengths for absorption lidar and excitation fluorescence pairs for fluorescence lidar, for optimal detection of species. Orthogonal spectra and cross sections are used as mathematical representations which provide a quantitative measure of species distinguishability in mixtures. Using these quantities, a simple expression for the absolute error in calculated species concentration is derived and optimization is accomplished by variation of lidar parameters to minimize this error. It is shown that the optimum number of wavelengths for detection of a species using absorption lidar (excitation fluorescence pairs for fluorescence lidar) is the same as the number of species in the mixture. Each species present in the mixture has its own set of optimum wavelengths. There is usually some overlap in these sets. The optimization method is applied to two examples, one using absorption and the other using fluorescence lidar, for analyzing mixtures of four organic compounds. The effect of atmospheric attenuation is included in the optimization process. Although the number of optimum wavelengths might be small, it is essential to do large numbers of measurements at these wavelengths in order to maximize canceling of statistical errors.
Date: September 1, 1997
Creator: Shokair, I.R.
Partner: UNT Libraries Government Documents Department