3 Matching Results

Search Results

Advanced search parameters have been applied.

Reliable Prediction Intervals and Bayesian Estimation for Demand Rates of Slow-Moving Inventory

Description: Application of multisource feedback (MSF) increased dramatically and became widespread globally in the past two decades, but there was little conceptual work regarding self-other agreement and few empirical studies investigated self-other agreement in other cultural settings. This study developed a new conceptual framework of self-other agreement and used three samples to illustrate how national culture affected self-other agreement. These three samples included 428 participants from China, 818 participants from the US, and 871 participants from globally dispersed teams (GDTs). An EQS procedure and a polynomial regression procedure were used to examine whether the covariance matrices were equal across samples and whether the relationships between self-other agreement and performance would be different across cultures, respectively. The results indicated MSF could be applied to China and GDTs, but the pattern of relationships between self-other agreement and performance was different across samples, suggesting that the results found in the U.S. sample were the exception rather than rule. Demographics also affected self-other agreement disparately across perspectives and cultures, indicating self-concept was susceptible to cultural influences. The proposed framework only received partial support but showed great promise to guide future studies. This study contributed to the literature by: (a) developing a new framework of self-other agreement that could be used to study various contextual factors; (b) examining the relationship between self-other agreement and performance in three vastly different samples; (c) providing some important insights about consensus between raters and self-other agreement; (d) offering some practical guidelines regarding how to apply MSF to other cultures more effectively.
Date: August 2007
Creator: Lindsey, Matthew Douglas
Partner: UNT Libraries

Time Series Data Analysis of Single Subject Experimental Designs Using Bayesian Estimation

Description: This study presents a set of data analysis approaches for single subject designs (SSDs). The primary purpose is to establish a series of statistical models to supplement visual analysis in single subject research using Bayesian estimation. Linear modeling approach has been used to study level and trend changes. I propose an alternate approach that treats the phase change-point between the baseline and intervention conditions as an unknown parameter. Similar to some existing approaches, the models take into account changes in slopes and intercepts in the presence of serial dependency. The Bayesian procedure used to estimate the parameters and analyze the data is described. Researchers use a variety of statistical analysis methods to analyze different single subject research designs. This dissertation presents a series of statistical models to model data from various conditions: the baseline phase, A-B design, A-B-A-B design, multiple baseline design, alternating treatments design, and changing criterion design. The change-point evaluation method can provide additional confirmation of causal effect of the treatment on target behavior. Software codes are provided as supplemental materials in the appendices. The applicability for the analyses is demonstrated using five examples from the SSD literature.
Date: August 2015
Creator: Aerts, Xing Qin
Partner: UNT Libraries

Bayesian Methods for Radiation Detection and Dosimetry

Description: We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed compartmental activities. From the estimated probability densities of the model parameters we were able to derive the densities for compartmental activities for a two compartment catenary model at different times. We also calculated the average activities and their standard deviation for a simple two compartment model.
Date: September 29, 2002
Creator: Groer, Peter G.
Partner: UNT Libraries Government Documents Department