548 Matching Results

Search Results

Advanced search parameters have been applied.

Crater Measurements

Description: From abstract: Based upon the results of Project Pre-Schooner new cratering curves for basalt have been developed. The deepest detonation Charlie, produced a mound of broken rock and earth that had a crater-like depression in its center entirely above the preshot ground surface.
Date: March 1965
Creator: Spruill, Joseph L. & Paul, Roger A.
Partner: UNT Libraries Government Documents Department

Entry Boreholes Summary Report for the Waste Treatment Plant Seismic Boreholes Project

Description: This report describes the 2006 fiscal year field activities associated with the installation of four cable-tool-drilled boreholes located within the boundary of the Waste Treatment Plant (WTP), DOE Hanford site, Washington. The cable-tool-drilled boreholes extend from surface to ~20 ft below the top of basalt and were utilized as cased entry holes for three deep boreholes (approximately 1400 ft) that were drilled to support the acquisition of sub-surface geophysical data, and one deep corehole (1400 ft) that was drilled to acquire continuous core samples from underlying basalt and sedimentary interbeds. The geophysical data acquired from these boreholes will be integrated into a seismic response model that will provide the basis for defining the seismic design criteria for the WTP facilities.
Date: February 28, 2007
Creator: Horner, Jake A.
Partner: UNT Libraries Government Documents Department

Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

Description: Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects
Date: April 29, 2013
Creator: Spane, Frank A.
Partner: UNT Libraries Government Documents Department

Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis

Description: This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.
Date: August 1, 2007
Creator: Payne, Suzette
Partner: UNT Libraries Government Documents Department

Potential for Natural Gas Storage in Deep Basalt Formations at Canoe Ridge, Washington State: A Hydrogeologic Assessment

Description: Between 1999 and 2002, Pacific Gas Transmission Company (PGT) (now TransCanada Pipeline Company) and AVISTA Corporation, together with technical support provided by the Pacific Northwest National Laboratory and the U.S. Department of Energy (DOE) examined the feasibility of developing a subsurface, natural gas-storage facility in deep, underlying Columbia River basalt in south-central Washington state. As part of this project, the 100 Circles #1 well was drilled and characterized in addition to surface studies. This report provides data and interpretations of the geology and hydrology collected specific to the Canoe Ridge site as part of the U.S. DOE funding to the Pacific Northwest National Laboratory in support of this project.
Date: September 24, 2005
Creator: Reidel, Steve P.; Spane, Frank A. & Johnson, Vernon G.
Partner: UNT Libraries Government Documents Department

Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis

Description: This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.
Date: April 1, 2006
Creator: Payne, Suzette
Partner: UNT Libraries Government Documents Department

Close-in Air Blast from a Row Charge in Basalt

Description: From abstract: Close-in air blast measurements were made on the Dugout shot. Major constituents of the blast wave were the ground-shock-induced pulse and the pulse from venting gases. The ground-shock-induced pulse was the dominant one at all stations.
Date: August 4, 1965
Creator: Vortman, Luke J.
Partner: UNT Libraries Government Documents Department

Phase Identification of Seismic Borehole Samples

Description: This report documents the phase identification results obtained by x-ray diffraction (XRD) analysis of samples taken from borehole C4998 drilled at the Waste Treatment Plant (WTP) on the Hanford Site (REF). XRD samples were taken from fractures and vesicles or are minerals of interest at areas of interest within the basalt formations cored. The samples were powder mounted and analyzed. Search-match software was used to select the best match from the ICDD mineral database based on peak locations and intensities.
Date: November 1, 2006
Creator: Crum, Jarrod V. & Riley, Brian J.
Partner: UNT Libraries Government Documents Department

Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

Description: Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.
Date: December 15, 2006
Creator: Barnett, D. BRENT & Garcia, Benjamin J.
Partner: UNT Libraries Government Documents Department

Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4996

Description: This report presents the field-generated borehole log, lithologic summary, and the record of samples collected during the recent drilling and sampling of the basalt interval of borehole C4996 at the Waste Treatment Plant (WTP) on the Hanford Site. Borehole C4996 was one of four exploratory borings, one core hole and three boreholes, drilled to investigate and acquire detailed stratigraphic and down-hole seismic data. This data will be used to define potential seismic impacts and refine design specifications for the Hanford Site WTP.
Date: January 28, 2007
Creator: Adams , S. C.; Ahlquist, Stephen T.; Fetters, Jeffree R.; Garcia, Ben & Rust, Colleen F.
Partner: UNT Libraries Government Documents Department

Low temperature elastic constants and nonlinear acoustic response in rocks and complex materials

Description: The 'P-M Space' model of Guyer and McCall has some success in describing the large nonlinear effects ('slow dynamics') observed by Johnson et al. in rocks. The model uses elements which couple classical nonlinear elasticity with hysteretic components. The actual processes and scales corresponding to the model elements are not yet defined, however it is reasonable to seek energy scales by studying the low-temperature dependence of the elastic constants. We have measured qualitative elastic properties of basalt and Berea sandstone from room temperature down to 4 K using Resonant Ultrasound Spectroscopy (RUS). A simple elastic solid should show a monotonic increase in the elastic constants as temperature decreases. The basalt samples show this gross behavior but the sandstone shows a very unexpected anomalous regime between 40 K and 200 K where the elastic constants decrease with decreasing temperature. Both rocks show temperature-dependent structure in both the modulus and internal friction, and also significant hysteresis, indicating history and rate-dependent properties. This data provides insight into the time and energy scales of dynamical effects observed in sandstones.
Date: January 1, 2001
Creator: Darling, T. W. (Timothy W.); Ulrich, T. J. (Timothy J.); Johnson, P. A. (Paul A.) & Tencate, J. A. (James A.)
Partner: UNT Libraries Government Documents Department

Site-Specific Velocity and Density Model for the Waste Treatment Plant, Hanford, Washington.

Description: This report documents the work conducted under the SBP to develop a shear wave and compressional wave velocity and density model specific to the WTP site. Section 2 provides detailed background information on the WTP site and its underlying geology as well as on the Seismic Boreholes Project activities leading up to the Vs and Vp measurements. In Section 3, methods employed and results obtained are documented for measurements of Vs and Vp velocities in basalts and interbeds. Section 4 provides details on velocity measurements in the sediments underlying the WTP. Borehole gravity measurements of density of the subsurface basalt and sediments are described in Section 5. Section 6 describes the analysis of data presented in section 3-5, and presents the overall velocity and density model for the WTP site.
Date: June 27, 2007
Creator: Rohay, Alan C. & Brouns, Thomas M.
Partner: UNT Libraries Government Documents Department

Water Resources of the Warm Springs Indian Reservation, Oregon

Description: From introduction: The present study is an inventory and appraisal of the water resources of the reservation, including determination of flow in major streams, yield of water to wells and springs, and quality of water. This study was conducted in cooperation with the Confederated Tribes of the Warm Springs Reservation. The cooperation and assistance of many officials of the Confederated Tribes, of the Bureau of Indian Affairs, and of the Indian Health Service helped greatly. Well-drilling and test-pumping data and other information generously furnished by Satish Puri, Tribal Engineer, were especially helpful.
Date: 1976
Creator: Robison, J. H. & Laenen, Antonius
Partner: UNT Libraries Government Documents Department

Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

Description: The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty.
Date: August 29, 2001
Creator: Vermeul, Vince R; Cole, Charles R; Bergeron, Marcel P; Thorne, Paul D & Wurstner, Signe K
Partner: UNT Libraries Government Documents Department

Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts

Description: We used molecular techniques to analyze basalts of varying ages that were collected from the East Pacific Rise, 9 oN, from the rift axis of the Juan de Fuca Ridge, and from neighboring seamounts. Cluster analysis of 16S rDNA Terminal Restriction Fragment Polymorphism data revealed that basalt endoliths are distinct from seawater and that communities clustered, to some degree, based on the age of the host rock. This age-based clustering suggests that alteration processes may affect community structure. Cloning and sequencing of bacterial and archaeal 16S rRNA genes revealed twelve different phyla and sub-phyla associated with basalts. These include the Gemmatimonadetes, Nitrospirae, the candidate phylum SBR1093 in the c, andin the Archaea Marine Benthic Group B, none of which have been previously reported in basalts. We delineated novel ocean crust clades in the gamma-Proteobacteria, Planctomycetes, and Actinobacteria that are composed entirely of basalt associated microflora, and may represent basalt ecotypes. Finally, microarray analysis of functional genes in basalt revealed that genes coding for previously unreported processes such as carbon fixation, methane-oxidation, methanogenesis, and nitrogen fixation are present, suggesting that basalts harbor previously unrecognized metabolic diversity. These novel processes could exert a profound influence on ocean chemistry.
Date: September 30, 2008
Creator: Mason, Olivia U.; Di Meo-Savoie, Carol A.; Van Nostrand, Joy D.; Zhou, Jizhong; Fisk, Martin R. & Giovannoni, Stephen J.
Partner: UNT Libraries Government Documents Department

Disturbance of isotope systematics in meteorites during shock and thermal metamorphism and implications for shergottite chronology

Description: Shock and thermal metamorphism of meteorites from differentiated bodies such as the Moon and Mars have the potential to disturb chronometric information contained in these meteorites. In order to understand the impact-related mechanisms and extent of disturbance to isochrons, we undertook experiments to shock and heat samples of 10017, a 3.6 billion year old lunar basalt. One sub-sample was shocked to 55 GPa, a second subsample was heated to 1000 C for one week, and a third sub-sample was maintained as a control sample. Of the isotope systems analyzed, the Sm-Nd system was the least disturbed by shock or heat, followed by the Rb-Sr system. Ages represented by the {sup 238}U-{sup 206}Pb isotope system were degraded by shock and destroyed with heating. In no case did either shock or heating alone result in rotated or reset isochrons that represent a spurious age. In some cases the true crystallization age of the sample was preserved, and in other cases age information was degraded or destroyed. Although our results show that neither shock nor thermal metamorphism alone can account for the discordant ages represented by different isotope systems in martian meteorites, we postulate that shock metamorphism may render a meteorite more susceptible than unshocked material to subsequent disturbance during impact-related heating or aqueous alteration on Mars or Earth. The combination of these processes may result in the disparate chronometric information preserved in some meteorites.
Date: December 10, 2008
Creator: Gaffney, A M; Borg, L E & Asmerom, Y
Partner: UNT Libraries Government Documents Department

Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4993

Description: A core hole (C4998) and three boreholes (C4993, C4996, and C4997) were drilled to acquire stratigraphic and downhole seismic data to model potential seismic impacts and to refine design specifications and seismic criteria for the Waste Treatment Plant (WTP) under construction on the Hanford Site. Borehole C4993 was completed through the Saddle Mountains Basalt, the upper portion of the Wanapum Basalt, and associated sedimentary interbeds, to provide a continuous record of the rock penetrated by all four holes and to provide access to the subsurface for geophysical measure¬ment. Presented and compiled in this report are field-generated records for the deep mud rotary borehole C4993 at the WTP site. Material for C4993 includes borehole logs, lithologic summary, and record of rock chip samples collected during drilling through the months of August through early October. The borehole summary report also includes documentation of the mud rotary drilling, borehole logging, and sample collection.
Date: February 28, 2007
Creator: Rust, Colleen F.; Barnett, D. BRENT; Bowles, Nathan A. & Horner, Jake A.
Partner: UNT Libraries Government Documents Department

BP-5 Remedial Investigation Slug-Test Characterization Results for Well 699-52-55A

Description: Pacific Northwest National Laboratory conducted slug-test characterization at the final, completed BP-5 Remedial Investigation well 699-52-55A near the 200-East Area at the Hanford Site on April 22, 2008. The slug-test characterization was in support of the BP-5 Remedial Investigation. The portion of the unconfined aquifer tested is composed of sediments of the lower Ringold Formation and the underlying Elephant Mountain basalt flowtop. The basalt flowtop unit was included as part of the effective test-interval length for the slug-test analysis because the flowtop unit is hydraulically communicative with the unconfined aquifer. Estimates of hydraulic conductivity for the effective test-interval length represent composite values for the lower Ringold Formation and the underlying Elephant Mountain basalt flow top.
Date: July 21, 2008
Creator: Newcomer, Darrell R.
Partner: UNT Libraries Government Documents Department