3 Matching Results

Search Results

Advanced search parameters have been applied.

Prediction of metal sorption in soils

Description: Radionuclide transport in soils and groundwaters is routinely calculated in performance assessment (PA) codes using simplified conceptual models for radionuclide sorption, such as the K{sub D} approach for linear and reversible sorption. Model inaccuracies are typically addressed by adding layers of conservativeness (e.g., very low K{sub D}'s), and often result in failed transport predictions or substantial increases in site cleanup costs. Realistic assessments of radionuclide transport over a wide range of environmental conditions can proceed only from accurate, mechanistic models of the sorption process. They have focused on the sorption mechanisms and partition coefficients for Cs{sup +}, Sr{sup 2+} and Ba{sup 2+} (analogue for Ra{sup 2+}) onto iron oxides and clay minerals using an integrated approach that includes computer simulations, sorption/desorption measurements, and synchrotron analyses of metal sorbed substrates under geochemically realistic conditions. Sorption of Ba{sup 2+} and Sr{sup 2+} onto smectite is strong, pH-independent, and fully reversible, suggesting that cation exchange at the interlayer basal sites controls the sorption process. Sr{sup 2+} sorbs weakly onto geothite and quartz, and is pH-dependent. Sr{sup 2+} sorption onto a mixture of smectite and goethite, however, is pH- and concentration dependent. The adsorption capacity of montmorillonite is higher than that of goethite, which may be attributed to the high specific surface area and reaction site density of clays. The presence of goethite also appears to control the extent of metal desorption. In-situ, extended X-ray absorption fine structure (EXAFS) spectroscopic measurements for montmorillonite and goethite show that the first shell of adsorbed Ba{sup 2+} is coordinated by 6 oxygens. The second adsorption shell, however, varies with the mineral surface coverage of adsorbed Ba{sup 2+} and the mineral substrate. This suggests that Ba{sup 2+} adsorption on mineral surfaces involves more than one mechanism and that the stability of sorbed complexes will be affected by substrate ...
Date: March 2, 2000
Partner: UNT Libraries Government Documents Department

MOCVD growth and characterization of (Ba{sub x}Sr{sub 1{minus}x})Ti{sub 1+y}O{sub 3+z} thin films for high frequency devices

Description: The authors have investigated the structural and electrical characteristics of (Ba{sub x}Sr{sub 1{minus}x})Ti{sub 1+y}O{sub 3+z} (BST) thin films. The BST thin films were deposited at 650 C on platinized silicon with good thickness and composition uniformity using a large area, vertical liquid-delivery metalorganic chemical vapor deposition (MOCVD) system. The (Ba+Sr)/Ti ratio of the BST films was varied from 0.96 to 1.05 at a fixed Ba/Sr ratio of 70/30, as determined using x-ray fluorescence spectroscopy (XRF) and Rutherford backscattering spectrometry (RBS). Patterned Pt top electrodes were deposited onto the BST films at 350 C through a shadow mask using electron beam evaporation. Annealing the entire capacitor structure in air at 700 C after deposition of top electrodes resulted in a substantial reduction of the dielectric loss. Useful dielectric tunability as high as 2.3:1 was measured.
Date: January 18, 2000
Creator: Baumann, P. K.; Streiffer, S. K.; Im, J.; Baldo, P.; McCormick, A.; Auciello, O. et al.
Partner: UNT Libraries Government Documents Department