5 Matching Results

Search Results

Advanced search parameters have been applied.

Adding Complex Terrain and Stable Atmospheric Condition Capability to the Simulator for On/Offshore Wind Farm Applications (SOWFA) (Presentation)

Description: This presentation describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver so that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with some preliminary results calculations of a stable atmospheric boundary layer and flow over a simple set of hills.
Date: June 1, 2013
Creator: Churchfield, M. J.
Partner: UNT Libraries Government Documents Department

The Influence of High Aerosol Concentration on Atmospheric Boundary Layer Temperature Stratification

Description: Investigations of the changing in the atmospheric boundary layer (ABL) radiation balance as cased by natural and anthropogenic reasons is an important topic of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program. The influence of aerosol on temperature stratification of ABL while its concentration was extremely high within a long period of time was studied experimentally. The case was observed in Moscow region (Russia) with the transport of combustion products from peat-bog and forest fires in July-September, 2002. At this time the visibility was some times at about 100-300 m. Aerosol concentration measured by Moscow University Observatory and A.M. Obukhov Institute of Atmospheric Physics field station in Zvenigorod (55.7 N; 36.6 E) for several days was in 50-100 times more than background one (Gorchakov at al 2003). The high aerosol concentration can change the radiation balance at ABL, and so to change thermal stratification in ABL above the mega lopolis. For the analysis the data were used of synchronous measurements by MTP-5 (Microwave Temperature Profiler operating at wavelength 5 mm) in two locations, namely: downtown Moscow and country-side which is 50 km apart to the West (Zvenigorod station). (Kadygrov and Pick 1998; Westwater at al 1999; Kadygrov at al 2002). Zvenigorod station is located in strongly continental climate zone which is in between of the climates of ARM sites (NSANorth Slope of Alaska and SGP-Southern Great Plains). The town of Zvenigorod has little industry, small traffic volume and topography conductive to a good air ventilation of the town. For these reasons Zvenigorod can be considered as an undisturbed rural site. For the analysis some days were chosen with close meteorological parameters (average temperature, humidity, wind, pressure and cloud form) but strongly differing in aerosol concentration level.
Date: March 18, 2005
Creator: Khaykin, M.N.; Kadygrove, E.N. & Golitsyn, G.S.
Partner: UNT Libraries Government Documents Department

Turbulence-Turbine Interaction: The Basis for the Development of the TurbSim Stochastic Simulator

Description: A combination of taller wind turbines with more flexible rotors and towers operating in turbulent conditions that are not well understood is contributing to much higher than anticipated maintenance and repairs costs and is associated with lower energy production. This report documents evidence of this and offers the turbine designers an expanded tool that resolves many of these shortcomings.
Date: November 1, 2011
Creator: Kelley, N. D.
Partner: UNT Libraries Government Documents Department

Wind Energy-Related Atmospheric Boundary Layer Large-Eddy Simulation Using OpenFOAM: Preprint

Description: This paper develops and evaluates the performance of a large-eddy simulation (LES) solver in computing the atmospheric boundary layer (ABL) over flat terrain under a variety of stability conditions, ranging from shear driven (neutral stratification) to moderately convective (unstable stratification).
Date: August 1, 2010
Creator: Churchfield, M.J.; Vijayakumar, G.; Brasseur, J.G. & Moriarty, P.J.
Partner: UNT Libraries Government Documents Department

What causes the density effect in young forest plantations?

Description: In young forest plantations, trees planted at high densities frequently show more rapid height and diameter growth than those plants at lower densities. This positive growth response to density (the ''density effect'') often manifests long before seedlings are tall enough to shade one another, so it is not a simple response to shade. The mechanism(s) which trigger and sustain this growth enhancement are unknown. Our objectives were to document the temporal dynamics of positive growth response to increasing density in Douglas-fir plantations and to test two hypotheses as potential mechanisms for this response. The hypotheses are (1) a canopy boundary layer effect, and (2) alterations in the quality of light reflected from neighboring trees. The ''boundary layer'' hypotheses proposes that changes in atmospheric mixing occur in high-density plantations, promoting increased concentrations of CO{sub 2} and H{sub 2}O vapor during early morning hours, which in turn would enhance carbon assimilation. The ''light quality'' hypothesis proposes that the presence of neighbors alters the ratio of red to far red light in the canopy environment. Plant sensors detect this change in light quality, and growth and development is altered in response. We found that boundary layer conductance was higher, as we predicted, in low-density Douglas-fir stands than in high-density stands five years after planting. The changes in boundary conductance were accompanied by higher CO{sub 2} and H{sub 2}O vapor during early morning hours. However, we also found that the primary manifestation of the density effect in Douglas-fir occurs two to four years after planting, and we were not able to measure differences in boundary conductance in different densities at that time. Also, we found no difference in carbon isotope composition of wood cellulose formed in high- vs. low-density stands two to three years after planting. We conclude that although stand density may have ...
Date: July 21, 2002
Creator: Bond, Barbara J. & Ritchie, Gary A.
Partner: UNT Libraries Government Documents Department