753 Matching Results

Search Results

Advanced search parameters have been applied.

ARAC simulations of the ash plume from the December 1997 eruption of Soufriere Hills Volcano, Montserrat

Description: Ash clouds generated by erupting volcanoes represent a serious hazard to military and civil aviation. The dispersion modeling system of the Atmospheric Release Advisory Capability (ARAC) has been used to model the cloud resulting from the eruption of the Soufriere Hills volcano, Montserrat in December 1997. A clone of parts of the ARAC system, now being installed at the Air Force Weather Agency (AFWA), will enable AFWA to provide hazard guidance to military operations in the vicinity of erupting volcanoes. This paper presents ARAC� s modeling results and discusses potential application of similar calculations for AFWA support during future events.
Date: October 1, 1998
Creator: Ellis, J. S.; Lefevre, R. J.; Pace, J. C.; Vogt, P. J. & Voight, B.
Partner: UNT Libraries Government Documents Department

Ash & Pulverized Coal Deposition in Combustors & Gasifiers

Description: Further progress in achieving the objectives of the project was made in the period of July 1 to September 30, 1997. The direct numerical simulation of particle removal process in turbulent gas flows was continued. Variations of vorticity contours which are averaged over a short time duration are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. The sublayer model for evaluating the particle deposition in turbulent flows was extended to include the effect of particle rebound. A new more advance flow model for the near wall vortices is also used in these analysis. Sample particle trajectories are obtained and discussed. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity is compared with the empirical correlation and the available data and discussed. Particle resuspension process in turbulent flows are studied. The model is compared with the experimental data. It is shown that when the effects of the near wall flow structure, as well as the surface roughness are included the model agrees with the available experimental data.
Date: December 2, 1998
Creator: Ahmadi, Goodarz
Partner: UNT Libraries Government Documents Department

Ash & Pulverized Coal Deposition in Combustors & Gasifiers

Description: Further progress in achieving the objectives of the project was made in the period of October 1 to December 31, 1996. In particular, the sublayer model for evaluating the particle deposition in turbulent flows was extended to include the effect of particle rebound. A new more advance flow model for the near wall vortices is also used in these analysis. The computational model for simulating particle transport in turbulent flows was used to analyze the dispersion and deposition of particles in a recirculating flow region. The predictions of the particle resuspension model is compared with the experimental data. It is shown that when the effects of the near wall flow structure, as we as the surface roughness are included the model agrees with the available experimental data. Considerable progress was also made in the direct numerical simulation of particle removal process in turbulent gas flows. Experimental data for transport and deposition of glass fiber in the aerosol wind tunnel was also obtained.
Date: December 2, 1998
Creator: Ahmadi, Goodarz
Partner: UNT Libraries Government Documents Department

COAL ASH RESOURCES RESEARCH CONSORTIUM

Description: The Coal Ash Resources Research Consortium (CARRC, pronounced �cars�) is the core coal combustion by-product (CCB) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCBs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCB utilization and ensuring its successful application. CARRC continued the partnership of industry partners, university researchers, and the U.S. Department of Energy (DOE) addressing needs in the CCB industry through technical research and development projects. Technology transfer also continued through distribution and presentation of the results of research activities to appropriate audiences, with emphasis on reaching government agency representatives and end users of CCBs. CARRC partners have evolved technically and have jointly developed an understanding of the layers of social, regulatory, legal, and competition issues that impact the success of CCB utilization as applies to the CCB industry in general and to individual companies. Many CARRC tasks are designed to provide information on CCB performance including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC activities from 1993�1998 included a variety of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCBs. The tasks summarized in this report are 1) The Demonstration of CCB Use in Small Construction Projects, 2) Application of CCSEM (computer-controlled scanning electron microscopy) for Coal Combustion By-Product Characterization, 3) Development of a Procedure to Determine Heat of Hydration for Coal Combustion By-Products, 4) Investigation of the Behavior of High-Calcium Coal Combustion By-Products, 5) Development of an Environmentally Appropriate Leaching Procedure for Coal Combustion By-Products, 6) Set Time of Fly Ash Concrete, 7) Coal Ash Properties Database ...
Date: December 1, 1998
Partner: UNT Libraries Government Documents Department

Experimental measurements of the thermal conductivity of ash deposits: Part 2. Effects of sintering and deposit microstructure

Description: The authors report results from an experimental study that examines the influence of sintering and microstructure on ash deposit thermal conductivity. The measurements are made using a technique developed to make in situ, time-resolved measurements of the effective thermal conductivity of ash deposits formed under conditions that closely replicate those found in the convective pass of a commercial boiler. The technique is designed to minimize the disturbance of the natural deposit microstructure. The initial stages of sintering and densification are accompanied by an increase in deposit thermal conductivity. Subsequent sintering continues to densify the deposit, but has little effect on deposit thermal conductivity. SEM analyses indicates that sintering creates a layered deposit structure with a relatively unsintered innermost layer. They hypothesize that this unsintered layer largely determines the overall deposit thermal conductivity. A theoretical model that treats a deposit as a two-layered material predicts the observed trends in thermal conductivity.
Date: April 1, 2000
Creator: Robinson, A. L.; Buckley, S. G.; Yang, N. & Baxter, L. L.
Partner: UNT Libraries Government Documents Department

Ash & Pulverized Coal Deposition in Combustors & Gasifiers

Description: Further progress in achieving the objectives of the project was made in the period of January I to March 31, 1998. The direct numerical simulation of particle removal process in turbulent gas flows was completed. Variations of particle trajectories are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity for irregular fibrous particles is compared with the empirical correlation and the available data for glass fibers and discussed. Additional progress on the sublayer model for evaluating the particle deposition and resuspension in turbulent flows was made.
Date: December 2, 1998
Creator: Ahmadi, Goodarz
Partner: UNT Libraries Government Documents Department

An Advanced Control System For Fine Coal Flotation

Description: A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of ash content. Then, based on the economic and metallurgical performance of the circuit, variables such as collector dosage, frother dosage, and pulp level are adjusted using model-based control algorithms to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the ninth quarter of this project, Task 3 (Model Building and Computer Simulation) and Task 4 (Sensor Testing) were nearly completed, and Task 6 (Equipment Procurement and Installation) was initiated. Previously, data collected from the plant sampling campaign (Task 2) were used to construct a population balance model to describe the steady-state and dynamic behavior of the flotation circuit. The details of this model were presented in the Eighth Quarterly Technical Progress Report. During the past quarter, a flotation circuit simulator was designed and used to evaluate control strategies. As a result of this work, a model-based control strategy has been conceived which will allow manipulated variables to be adjusted in response to disturbances to achieve a target incremental ash value in the last cell of the bank. This will, in effect, maximize yield at an acceptable product quality. During this same period, a video-based ash analyzer was installed on the flotation tailings stream at the Moss No. 3 preparation plant. A preliminary calibration curve was established, and data are continuing to be collected in order to improve the calibration of the analyzer.
Date: August 25, 1998
Creator: Luttrell, G. H. & Adel, G. T.
Partner: UNT Libraries Government Documents Department

Rocky Flats ash test procedure (sludge stabilization)

Description: Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. This test will also gain information on the effects of the glovebox atmosphere (moisture) on the stabilized material. This document provides instructions for testing Rocky Flats Ash in the HC-21C muffle furnace process.
Date: September 14, 1995
Creator: Winstead, M.L.
Partner: UNT Libraries Government Documents Department

Ash & Pulverized Coal Deposition in Combustors & Gasifiers

Description: Gravity- driven granular flow of slightly frictional particles down an inclined, bumpy chute is studied. A modified kinetic model which includes the frictional energy loss effects is used, and the boundary conditions for a bumpy wall with small friction are derived by ensuring the balance of momentum and energy. At the free surface, the condition of vanishing of the solid volume fraction is used. The mean velocity, the fluctuation kinetic energy and the solid volume fraction profiles are evaluated. It is shown that steady granular gravity flow down a bumpy frictional chute could be achieved at arbitrary inclination angles. The computational results also show that the slip velocity may vary considerably depending on the granular layer height, the surface boundary roughness, the fric-tion coefficient and the inclination angles. The model predictions are compared with the existing experimental and simulation data, and good agreement is observed. In particular, the model can well predicate the features of the variation of solid volume fraction and fluctuation energy profiles for different particle- wall friction coeffi-cients and wall roughnesses.
Date: December 14, 1998
Creator: Ahamadi, Goodarz
Partner: UNT Libraries Government Documents Department

An Advanced Control System for Fine Coal Floatation

Description: A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of ash content. Then, based on the economic and metallurgical performance of the circuit, variables such as collector dosage, frother dosage, and pulp level are adjusted using model-based control algorithms to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the eighth quarter of this project, the analysis of data collected during Task 2 (Sampling and Data Analysis) was completed, and significant progress was made on Task 3 (Model Building and Computer Simulation). Previously, a plant sampling campaign had been conducted at Pittston�s Moss No. 3 preparation plant to provide data for the development of a mathematical process model and a model-based control system. During this campaign, a one-half factorial design experiment, blocked into low and high feed rates, was conducted to investigate the effects of collector, frother, and pulp level on model parameters. In addition, samples were collected during the transient period following each change in the manipulated variables to provide data for confirmation of the dynamic process simulator. A residence time distribution (RTD) test was also conducted to estimate the mean residence time. This is a critical piece of information since no feed flowrate measurement is available, and the mean residence time can be used to estimate the feed flowrate. Feed samples were taken at timed intervals and floated in a laboratory flotation cell to investigate the magnitude of feed property disturbances and their duration.
Date: June 1, 1998
Creator: Luttrell, G. H. & Adel, G. T.
Partner: UNT Libraries Government Documents Department

Ash & Pulverized Coal Deposition in Combustors & Gasifiers

Description: Further progress in achieving the objectives of the project was made in the period of October I to December 31, 1997. The direct numerical simulation of particle removal process in turbulent gas flows was continued. Variations of vorticity contours which are averaged over a short time duration are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. The sublayer model for evaluating the particle deposition in turbulent flows was extended to include the effect of particle rebound. A new more advance flow model for the near wall vortices is also used in these analysis. Sample particle trajectories are obtained and discussed. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity is compared with the empirical correlation and the available data and discussed. Particle resuspension process in turbulent flows are studied. The model is compared with the experimental data. It is shown that when the effects of the near wall flow structure, as well as the surface roughness are included the model agrees with the available experimental data.
Date: December 2, 1998
Creator: Ahmadi, Goodarz
Partner: UNT Libraries Government Documents Department

Task 3.0 - Advanced Power Systems Subtask 3.18 - Ash Behavior in Power Systems

Description: Ash behavior in power systems can have a significant impact on the design and performance of advanced power systems. The Energy & Environmental Research Center (EERC) has focused significant effort on ash behavior in conventional power systems that can be applied to advanced power systems. This initiative focuses on filling gaps in the understanding of fundamental mechanisms of ash behavior that has relevance to commercial application and marketable products. This program develops methods and means to better understand and mitigate adverse coal ash behavior in power systems and can act to relieve the U.S. reliance on diminishing recoverable oil resources, especially those resources that are not domestically available and are fairly uncertain.
Date: July 1, 1997
Creator: Zygarlicke, Christopher J. & McCollor, Donald P.
Partner: UNT Libraries Government Documents Department

Fireside Corrosion

Description: Oxy-fuel fireside research goals are: (1) determine the effect of oxyfuel combustion on fireside corrosion - flue gas recycle choice, staged combustion ramifications; and (2) develop methods to use chromia solubility in ash as an ash corrosivity measurement - synthetic ashes at first, then boiler and burner rig ashes.
Date: July 14, 2011
Creator: Holcomb, Gordon
Partner: UNT Libraries Government Documents Department

Fireside Corrosion USC Steering

Description: Oxy-Fuel Fireside Research goals are: (1) Determine the effect of oxy-fuel combustion on fireside corrosion - (a) Flue gas recycle choice, Staged combustion ramifications, (c) JCOAL Collaboration; and (2) Develop methods to use chromia solubility in ash as an 'ash corrosivity' measurement - (a) Synthetic ashes at first, then boiler and burner rig ashes, (b) Applicable to SH/RH conditions.
Date: September 7, 2011
Creator: Holcomb, G. R. & Tylczak, J.
Partner: UNT Libraries Government Documents Department

Task 2—Materials for Advanced Boiler and Oxy-combustion Systems (NETL-US),” a

Description: Develop a method for determining the solubility of protective oxides (Fe2O3, Cr2O3 and NiO) in an ash exposed at a particular temperature and gas composition. Metal oxide powder (Cr2O3 and NiO) will be mixed with a synthetic ash, milled for complete mixing, exposed at a variety of exposure times, and removed for analysis. • A decision will be made based on the results on to going further with the next tasks. • Perform the solubility tests on synthetic ashes and ashes collected from various oxyfuel burner rigs. • Correlate the solubility with long term corrosion tests and variables from the b i 4 burner rig tests.
Date: May 1, 2010
Creator: Holcomb, G. R.
Partner: UNT Libraries Government Documents Department

Novel Adsorbent-Reactants for Treatment of Ash and Scrubber Pond Effluents

Description: The overall goal of this project was to evaluate the ability of novel adsorbent/reactants to remove specific toxic target chemicals from ash and scrubber pond effluents while producing stable residuals for ultimate disposal. The target chemicals studied were arsenic (As(III) and As(V)), mercury (Hg(II)) and selenium (Se(IV) and Se(VI)). The adsorbent/reactants that were evaluated are iron sulfide (FeS) and pyrite (FeS{sub 2}). Procedures for measuring concentrations of target compounds and characterizing the surfaces of adsorbent-reactants were developed. Effects of contact time, pH (7, 8, 9, 10) and sulfate concentration (0, 1, 10 mM) on removal of all target compounds on both adsorbent-reactants were determined. Stability tests were conducted to evaluate the extent to which target compounds were released from the adsorbent-reactants when pH changed. Surface characterization was conducted with x-ray photoelectron spectroscopy (XPS) to identify reactions occurring on the surface between the target compounds and surface iron and sulfur. Results indicated that target compounds could be removed by FeS{sub 2} and FeS and that removal was affected by time, pH and surface reactions. Stability of residuals was generally good and appeared to be affected by the extent of surface reactions. Synthesized pyrite and mackinawite appear to have the required characteristics for removing the target compounds from wastewaters from ash ponds and scrubber ponds and producing stable residuals.
Date: January 31, 2010
Creator: Batchelor, Bill; Han, Dong Suk & Kim, Eun Jung
Partner: UNT Libraries Government Documents Department

Desulfurization of coal: Enhanced selectivity using phase transfer catalysts. Final technical report, September 1, 1995--August 31, 1996

Description: Due to environmental problems related to the combustion of high sulfur Illinois coal, there continues to be interest in the development of viable pre-combustion desulfurization processes. Recent studies by the authors have obtained very good sulfur removals but the reagents that are used are too expensive. Use of cheaper reagents leads to a loss of desired coal properties. This study investigated the application of phase transfer catalysts to the selective oxidation of sulfur in coal using air and oxygen as oxidants. The phase transfer catalyst was expected to function as a selectivity moderator by permitting the use of milder reaction conditions than otherwise necessary. This would enhance the sulfur selectivity and help retain the heating value of the coal. The use of certain coal combustion wastes for desulfurization, and the application of cerium (IV) catalyzed air oxidations for selective sulfur oxidation were also studied. If successful this project would have lead to the rapid development of a commercially viable desulfurization process. This would have significantly improved the marketability of Illinois coal. However, the phase transfer catalysts, the cerium and the scrubber sledge did not catalize the sulfur removal significantly.
Date: May 1, 1997
Creator: Palmer, S.R. & Hippo, E.J.
Partner: UNT Libraries Government Documents Department

Bulging of cans containing plutonium residues. Summary report

Description: In 1994, two cans in the Lawrence Livermore National Laboratory Plutonium Facility were found to be bulging as a result of the generation of gases form the plutonium ash residues contained in the cans. This report describes the chronology of this discovery, the response actions that revealed other pressurized cans, the analysis of the causes, the short-term remedial action, a followup inspection of the short-term storage packages, and a review of proposed long-term remedial options.
Date: March 1, 1996
Creator: Van Konynenburg, R.A.; Wood, D.H.; Condit, R.H. & Shikany, S.D.
Partner: UNT Libraries Government Documents Department

Preliminary Strength Measurements of High Temperature Ash Filter Deposits

Description: The objective of this study is to develop and evaluate preliminary strength measurement techniques for high temperature candle filter ash deposits. The efficient performance of a high temperature gas filtering system is essential for many of the new thermal cycles being proposed for power plants of the future. These new cycles hold the promise of higher thermal efficiency and lower emissions of pollutants. Many of these cycles involve the combustion or gasification of coal to produce high temperature gases to eventually be used in gas turbines. These high temperature gases must be relatively free of particulates. Today, the candle filter appears to be the leading candidate for high temperature particulate removal. The performance of a candle filter depends on the ash deposits shattering into relatively large particles during the pulse cleaning (back flushing) of the filters. These relatively large particles fall into the ash hopper and are removed from the system. Therefore, these 1247 particles must be sufficiently large so that they will not be re-entrained by the gas flow. The shattering process is dictated by the strength characteristics of the ash deposits. Consequently, the objective of this research is to develop measurements for the desired strength characteristics of the ash deposits. Experimental procedures were developed to measure Young`s modulus of the ash deposit at room temperature and the failure tensile strain of ash deposits from room temperature to elevated temperatures. Preliminary data has been obtained for both soft and hard ash deposits. The qualifier ``preliminary`` is used to indicate that these measurements are a first for this material, and consequently, the measurement techniques are not perfected. In addition, the ash deposits tested are not necessarily uniform and further tests are needed in order to obtain meaningful average data.
Date: December 31, 1996
Creator: Kang, B.S.; Johnson, E.K.; Mallela, R. & Barberio, J.F.
Partner: UNT Libraries Government Documents Department

PRD-66 Gas Filter Development

Description: The PRD-66 manufacturing process offers a unique approach to the production of hot gas candle filters for application in Pressurized Fluidized Bed Combustors (PFBC) and Integrated Gas Combined Cycle (IGCC) power systems. Fabricated from readily available and inexpensive raw materials, the PRD-66 process uses an admixture of textile and ceramic concepts to produce an all-oxide filter element containing no refractor ceramic fiber (RCF) residues in the finished products. The use demonstration of textile grade glass yarn as a consumable reactant gives the advantages of fabrication versatility and shape control and a unique micro-layered phase structure in the fired product, resulting in unsurpassed thermal shock resistance and operating temperature capability of greater than 1200{degrees}C in a low-cost package. This high throughput, adaptable process allows tailoring of filter element dimensions and operating properties to specific system needs with short lead times and low cost penalties.
Date: July 1, 1997
Creator: Forsythe, G.D. & Connolly, E.S.
Partner: UNT Libraries Government Documents Department

Advanced hot-gas filter development

Description: Coal is the most abundant fossil-fuel resource in the United States. `Clean coal` technologies, such as pressurized fluidized-bed combustion (PFBC) and integrated gasification combined-cycle (IGCC), require a hot gas filter to remove the corrosive and erosive coal ash entrained in the combustion gas stream. These hot gas filters, or candle filters, must be cost-effective while able to withstand the effects of corrosion, elevated temperature, thermal shock, and temperature transients. Ash loadings may range from 500 to 10,000 ppm by weight, and may contain particles as fine as 0.008 mils. The operating environment for the hot gas filter can range in pressure from 10 to 20 atm, in temperatures from 700 to 1750{degrees}F, and can be oxidizing or reducing. In addition, the process gases may contain volatile chloride, sulfur, and alkali species. Field testing of various commercially available, porous, ceramic filter matrices has demonstrated a loss of up to 50 percent of as-manufactured strength after 1,000 to 2,000 hours of exposure to these operating conditions, although full-scale elements have remained intact during normal process operations. Ultramet, a small business specializing in advanced materials R&D, has developed a new class of hot gas filter materials that offers lower back-pressure, higher permeability, longer life, and high filtration efficiency in the PFBC and IGCC environments. Subscale Ultrafoam Duplex Filter elements have undergone accelerated corrosion testing at temperatures of up to 2370{degrees}F (at Ultramet), and have been subjected to over 2,800 hours of exposure to hot PFBC gases (in the Westinghouse Advanced Particulate Filtration System at Brilliant, OH) without any loss in strength in either case. The Ultrafoam Duplex Filter matrix demonstrated 100 percent particle- capture efficiency of coal ash, and had an initial pressure drop of 0.1 to 0.6 in-wc/fpm. The Ultrafoam Duplex Filter is composed of a chemical vapor deposition (CVD), silicon carbide ...
Date: December 31, 1997
Creator: Stankiewicz, E.P.; Sherman, A.J. & Zinn, A.A.
Partner: UNT Libraries Government Documents Department

Microscopic analysis of Pu-contaminated incinerator ash: Implications for immobilization

Description: In this paper, a nanometer-scale mineralogical study with analytical transmission electron microscopy (AEM) of plutonium-bearing incinerator ash from the Rocky Flats Environmental Technology Site (RFETS) in Colorado is described. The findings from this work may have implications for the present effort to immobilize plutonium waste. Around 70% of the plutonium ash in the DOE weapons complex is stored at RFETS. The ash was formed from the combustion of contaminated wastes generated from plutonium processing. The RFETS incinerator ash composition has been determined by Blum et al. The ash was formed at temperatures estimated to be between 200 C and 900 C and contains up to 14 wt% Pu. Ash is a generic term used to describe the by-product of combustion and owing to the variability in the inorganic components.
Date: October 1, 1997
Creator: Buck, E.C.
Partner: UNT Libraries Government Documents Department

WHC natural phenomena hazards mitigation implementation plan

Description: Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.
Date: September 11, 1996
Creator: Conrads, T.J.
Partner: UNT Libraries Government Documents Department

A Strategy for Quantifying Radioactive Material in a Low-Level Waste Incineration Facility

Description: One of the methods proposed by the U.S. Department of Energy (DOE) for the volume reduction and stabilization of a variety of low-level radioactive wastes (LLW) is incineration. Many commercial incinerators are in operation treating both non-hazardous and hazardous wastes. These can obtain volume reductions factors of 50 or more for certain wastes, and produce a waste (ash) that can be easily stabilized if necessary by vitrification or cementation. However, there are few incinerators designed to accommodate radioactive wastes. One has been recently built at the Savannah River Site (SRS) near Aiken, SC and is burning non-radioactive hazardous waste and radioactive wastes in successive campaigns. The SRS Consolidated Incineration Facility (CIF) is RCRA permitted as a Low Chemical Hazard, Radiological facility as defined by DOE criteria (Ref. 1). Accordingly, the CIF must operate within specified chemical, radionuclide, and fissile material inventory limits (Ref. 2). The radionuclide and fissile material limits are unique to radiological or nuclear facilities, and require special measurement and removal strategies to assure compliance, and the CIF may be required to shut down periodically in order to clean out the radionuclide inventory which builds up in various parts of the facility.
Date: March 1, 1997
Creator: Hochel, R.C.
Partner: UNT Libraries Government Documents Department