164 Matching Results

Search Results

Advanced search parameters have been applied.

A History of the Fitzner/Eberhardt Arid Lands Ecology Reserve: Four Decades of Environmental Research

Description: This book describes the history of the Fitzner/Eberhardt Arid Lands Ecology Reserve. It briefly describes the setting; outlines historical land uses of the Reserve; describes its establishments and designations; and provides examples of the types of research and education projects PNNL conducted on the Reserve for over four decades. A comprehensive bibliography also is provided.
Date: September 1, 2003
Creator: O'Connor, Georganne P.; Rickard, William H.; Kennedy, Ellen P.; Dirkes, Roger L. & Feaster-Alley, Kathy
Partner: UNT Libraries Government Documents Department

Abrupt Climate Change: Final Report

Description: This document is part of the Synthesis and Assessment Products (SAP) described in the U.S. Climate Change Science Program (CCSP) Strategic Plan. This report is meant to reduce uncertainty in projections of how the Earth's climate and related systems may change in the future. It provides scientific information for supporting the decision-making audience and the expert scientific and stakeholder community.
Date: December 2008
Creator: Climate Change Science Program (U.S.). Subcommittee on Global Change Research.
Partner: UNT Libraries

Geomorphic responses as indicators of paleoclimate and climatic change

Description: There is little doubt that climate is an important parameter affecting the shape of the Earth`s surface. However absolute observance to the principles of climatic geomorphology leads us away from the study of processes because the analyses passes directly from climate to landscape form. An alternative approach is to examine the effects of climate change on the nature of the processes operating in the near surface environment. Utilizing this methodology, the climate-process relations take on greater significance, and lead to an understanding of the response(s) of geomorphic systems to shifts in climatic regime. Given that geomorphic systems respond to changes in climate regime, it should also be true that delineation of the changes in the types, rates, and magnitudes of geomorphic processes will provide insights into the timing and nature of past shifts in climate, particularly effective moisture. It is this approach that has been utilized herein. Specifically, geomorphic responses in eolian, lacustrine, and fluvial systems that have resulted in erosional and depositional events have been documented for several sites in Nevada (Figure 1), and used to infer the timing and character of climatic change in the Basin and Range Physiographic Province. The results and conclusions of the specific studies are provided.
Date: July 1, 1998
Partner: UNT Libraries Government Documents Department

A simple extension of two-phase characteristic curves to include the dry region

Description: Two-phase characteristic curves are necessary for the simulation of water and vapor flow in porous media. Existing functions such as van Genuchten, Brooks and Corey, and Luckner et al. have significant limitations in the dry region as the liquid saturation goes to zero. This region, which is important in a number of applications including liquid and vapor flow and vapor-solid sorption, has been the subject of a number of previous investigations. Most previous studies extended standard capillary pressure curves into the adsorption region to zero water content and required a refitting of the revised curves to the data. In contrast, the present method provides for a simple extension of existing capillary pressure curves without the need to refit the experimental data. Therefore, previous curve fits can be used, and the transition between the existing fit and the relationship in the adsorption region is easily calculated. The data-model comparison shows good agreement. This extension is a simple and convenient way to extend existing curves to the dry region.
Date: January 25, 2000
Partner: UNT Libraries Government Documents Department

Effects of seed origin and irrigation on survival and growth of transplanted shrubs

Description: Revegetation is difficult in the Mojave Desert due to limited, erratic precipitation and extreme temperatures. Establishing plant cover by transplanting native shrubs is known to be a promising technique, but many questions still remain regarding its use on a large operational scale. A study was initiated on the US Department of Energy Nevada Test Site (NTS) to determine the effects of seed origin and irrigation on survival and growth of transplanted shrubs. Plants of three species (Larrea tridentata, Ambrosia dumosa, and Atriplex canescens) were grown in a greenhouse and hardened outdoors. Plants of all three species were produced from two seed sources: (1) seed collected from the NTS (Mojave Desert), and (2) commercially available seed collected from outside the NTS. One-year-old containerized plants (180 of each species) were transplanted to a site on the NTS and irrigated with two liters of water at one of the following frequencies: (1) at time of planting only, (2) at time of planting and monthly during the first growing season, and (3) at time of planting and twice monthly during the first growing season. After 16 months, survival of all species was generally greater than 80% and was unaffected by irrigation treatments. Survival of fourwing saltbush was significantly greater from local versus non-local seed. Survival of bursage and creosotebush was generally unaffected by seed origin. Shrub volumes regardless of species or seed origin increased during the first growing season, and then decreased during the second growing season. Shrub volumes for fourwing saltbush were significantly greater for shrubs from local versus non-local seed.
Date: October 1, 1995
Creator: Winkel, V.K.
Partner: UNT Libraries Government Documents Department

Calcite Precipitation and Trace Metal Partitioning in Groundwater and the Vadose Zone: Remediation of Strontium -90 and Other Divalent Metals and Radionuclides in Arid Western Environments

Description: Calcite Precipitation and Trace Metal Partitioning in Groundwater and the Vadose Zone: Remediation of Strontium-90 and Other Divalent Metals and Radionuclides in Arid Western Environments
Date: February 17, 2003
Creator: Smith, Robert W.; Colwell, F. Rick S.; Ingram, Jani C.; Ferris, F. Grant; Reysenback, Anna-Louise & Fujita, Yoshiko
Partner: UNT Libraries Government Documents Department

The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States

Description: This document is a part of the Synthesis and Assessment Products described in the U.S. Climate Change Science Program Strategic Plan. The report describes how climate affects the design, construction, safety, operations, and maintenance of transportation infrastructure and systems. The prospect of a changing climate raises critical questions regarding how alterations in temperature, precipitation, storm events, and other aspects of the climate could affect the nation's roads, airports, rail, transit systems, pipelines, ports, and waterways. Phase I of this regional assessment of climate change and its potential impacts on transportation systems addresses these questions for the region of the U.S. central Gulf Coast between Galveston, Texas and Mobile, Alabama.
Date: May 2008
Creator: U.S. Climate Change Science Program and the Subcommittee on Global Change Research.
Partner: UNT Libraries

Soil Sampling to Demonstrate Compliance with Department of Energy Radiological Clearance Requirements for the ALE Unit of the Hanford Reach National Monument

Description: The Hanford Reach National Monument consists of several units, one of which is the Fitzner/Eberhardt Arid Lands Ecology Reserve (ALE) Unit. This unit is approximately 311 km2 of shrub-steppe habitat located to the south and west of Highway 240. To fulfill internal U. S. Department of Energy (DOE) requirements prior to any radiological clearance of land, DOE must evaluate the potential for residual radioactive contamination on this land and determine compliance with the requirements of DOE Order 5400.5. Historical soil monitoring conducted on ALE indicated soil concentrations of radionuclides were well below the Authorized Limits. However, the historical sampling was done at a limited number of sampling locations. Therefore, additional soil sampling was conducted to determine if the concentrations of radionuclides in soil on the ALE Unit were below the Authorized Limits. This report contains the results of 50 additional soil samples. The 50 soil samples collected from the ALE Unit all had concentrations of radionuclides far below the Authorized Limits. The average concentrations for all detectable radionuclides were less than the estimated Hanford Site background. Furthermore, the maximum observed soil concentrations for the radionuclides included in the Authorized Limits would result in a potential annual dose of 0.14 mrem assuming the most probable use scenario, a recreational visitor. This potential dose is well below the DOE 100-mrem per year dose limit for a member of the public. Spatial analysis of the results indicated no observable statistically significant differences between radionuclide concentrations across the ALE Unit. Furthermore, the results of the biota dose assessment screen, which used the ResRad Biota code, indicated that the concentrations of radionuclides in ALE Unit soil pose no significant health risk to biota.
Date: April 1, 2007
Creator: Fritz, Brad G.; Dirkes, Roger L. & Napier, Bruce A.
Partner: UNT Libraries Government Documents Department

The ecology of dust: local- to global-scale perspectives

Description: Emission and redistribution of dust due to wind erosion in drylands drives major biogeochemical dynamics and provides important aeolian environmental connectivity at scales from individual plants up to the global scale. Yet, perhaps because most relevant research on aeolian processes has been presented in a geosciences rather than ecological context, most ecological studies do not explicitly consider dust-driven processes. To bridge this disciplinary gap, we provide a general overview of the ecological importance of dust, examine complex interactions between wind erosion and ecosystem dynamics from the plant-interspace scale to regional and global scales, and highlight specific examples of how disturbance affects these interactions and their consequences. Changes in climate and intensification of land use will both likely lead to increased dust production. To address these challenges, environmental scientists, land managers and policy makers need to more explicitly consider dust in resource management decisions.
Date: January 1, 2009
Creator: Whicker, Jeffrey J; Field, Jason P; Belnap, Jayne; Breshears, David D; Neff, Jason; Okin, Gregory S et al.
Partner: UNT Libraries Government Documents Department

Survey of Revegetated Areas on the Fitzner/Eberhardt Arid Lands Ecology Reserve: Status and Initial Monitoring Results

Description: During 2010, the U.S. Department of Energy (DOE), Richland Operations Office removed a number of facilities and debris from the Fitzner/Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument (HRNM). Revegetation of disturbed sites is necessary to stabilize the soil, reduce invasion of these areas by exotic weeds, and to accelerate re-establishment of native plant communities. Seven revegetation units were identified on ALE based on soils and potential native plant communities at the site. Native seed mixes and plant material were identified for each area based on the desired plant community. Revegetation of locations affected by decommissioning of buildings and debris removal was undertaken during the winter and early spring of 2010 and 2011, respectively. This report describes both the details of planting and seeding for each of the units, describes the sampling design for monitoring, and summarizes the data collected during the first year of monitoring. In general, the revegetation efforts were successful in establishing native bunchgrasses and shrubs on most of the sites within the 7 revegetation units. Invasion of the revegetation areas by exotic annual species was minimal for most sites, but was above initial criteria in 3 areas: the Hodges Well subunit of Unit 2, and Units 6 and 7.
Date: September 1, 2011
Creator: Downs, Janelle L.; Link, Steven O.; Rozeboom, Latricia L.; Durham, Robin E.; Cruz, Rico O. & Mckee, Sadie A.
Partner: UNT Libraries Government Documents Department

Revegetation Plan for Areas of the Fitzner-Eberhardt Arid Lands Ecology Reserve Affected by Decommissioning of Buildings and Infrastructure and Debris Clean-up Actions

Description: The U.S. Department of Energy (DOE), Richland Operations Office is working to remove a number of facilities on the Fitzner Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument. Decommissioning and removal of buildings and debris on ALE will leave bare soils and excavated areas that need to be revegetated to prevent erosion and weed invasion. Four main areas within ALE are affected by these activities (DOE 2009;DOE/EA-1660F): 1) facilities along the ridgeline of Rattlesnake Mountain, 2) the former Nike missile base and ALE HQ laboratory buildings, 3) the aquatic research laboratory at Rattlesnake Springs area, and 4) a number of small sites across ALE where various types of debris remain from previous uses. This revegetation plan addresses the revegetation and restoration of those land areas disturbed by decommissioning and removal of buildings, facilities and associated infrastructure or debris removal. The primary objective of the revegetation efforts on ALE is to establish native vegetation at each of the sites that will enhance and accelerate the recovery of the native plant community that naturally persists at that location. Revegetation is intended to meet the direction specified by the Environmental Assessment (DOE 2009; DOE/EA-1660F) and by Stipulation C.7 of the Memorandum of Agreement (MOA) for the Rattlesnake Mountain Combined Community Communication Facility and InfrastructureCleanup on the Fitzner/Eberhardt Arid Lands Ecology Reserve, Hanford Site, Richland Washington(DOE 2009; Appendix B). Pacific Northwest National Laboratory (PNNL) under contract with CH2M Hill Plateau Remediation Company (CPRC) and in consultation with the tribes and DOE-RL developed a site-specific strategy for each of the revegetation units identified within this document. The strategy and implementation approach for each revegetation unit identifies an appropriate native species mix and outlines the necessary site preparation activities and specific methods for seeding and planting at each area. ...
Date: January 1, 2011
Creator: Downs, Janelle L.; Durham, Robin E. & Larson, Kyle B.
Partner: UNT Libraries Government Documents Department

Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

Description: The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.
Date: February 2, 2011
Creator: Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae et al.
Partner: UNT Libraries Government Documents Department

Regional Cost Estimates for Reclamation Practices on Arid and Semiarid Lands

Description: The U.S. Army uses the Integrated Training Area Management program for managing training land. One of the major objectives of the Integrated Training Area Management program has been to develop a method for estimating training land carrying capacity in a sustainable manner. The Army Training and Testing Area Carrying Capacity methodology measures training load in terms of Maneuver Impact Miles. One Maneuver Impact Mile is the equivalent impact of an M1A2 tank traveling one mile while participating in an armor battalion field training exercise. The Army Training and Testing Area Carrying Capacity methodology is also designed to predict land maintenance costs in terms of dollars per Maneuver Impact Mile. The overall cost factor is calculated using the historical cost of land maintenance practices and the effectiveness of controlling erosion. Because land maintenance costs and effectiveness are influenced by the characteristics of the land, Army Training and Testing Area Carrying Capacity cost factors must be developed for each ecological region of the country. Costs for land maintenance activities are presented here for the semiarid and arid regions of the United States. Five ecoregions are recognized, and average values for reclamation activities are presented. Because there are many variables that can influence costs, ranges for reclamation activities are also presented. Costs are broken down into six major categories: seedbed preparation, fertilization, seeding, planting, mulching, and supplemental erosion control. Costs for most land reclamation practices and materials varied widely within and between ecological provinces. Although regional cost patterns were evident for some practices, the patterns were not consistent between practices. For the purpose of estimating land reclamation costs for the Army Training and Testing Area Carrying Capacity methodology, it may be desirable to use the ''Combined Average'' of all provinces found in the last row of each table to estimate costs for arid ...
Date: February 1, 2002
Creator: Ostler, W. K.
Partner: UNT Libraries Government Documents Department

New Technologies to Reclaim Arid Lands User's Manual

Description: Approximately 70 percent of all U.S. military training lands are located in arid and semi-arid areas. Training activities in such areas frequently adversely affect vegetation, damaging plants and reducing the resilience of vegetation to recover once disturbed. Fugitive dust resulting from a loss of vegetation creates additional problems for human health, increasing accidents due to decreased visibility, and increasing maintenance costs for roads, vehicles, and equipment. Under conventional technologies to mitigate these impacts, it is estimated that up to 35 percent of revegetation projects in arid areas will fail due to unpredictable natural environmental conditions, such as drought, and reclamation techniques that were inadequate to restore vegetative cover in a timely and cost-effective manner. New reclamation and restoration techniques are needed in desert ranges to help mitigate the adverse effects of military training and other activities to arid-land environments. In 1999, a cooperative effort between the U.S. Department of Energy (DOE), the US. Department of Defense (DoD), and selected university scientists was undertaken to focus on mitigating military impacts in arid lands. As arid lands are impacted due to DoD and DOE activities, biological and soil resources are gradually lost and the habitat is altered. A conceptual model of that change in habitat quality is described for varying levels of disturbance in the Mojave Desert. As the habitat quality degrades and more biological and physical resources are lost from training areas, greater costs are required to return the land to sustainable levels. The purpose of this manual is to assist land managers in recognizing thresholds associated with habitat degradation and provide reclamation planning and techniques that can reduce the costs of mitigation for these impacted lands to ensure sustainable use of these lands. The importance of reclamation planning is described in this manual with suggestions about establishing project objectives, scheduling, ...
Date: October 1, 2002
Creator: Ostler, W. K.
Partner: UNT Libraries Government Documents Department

Environment, safety, health, and quality plan for the TRU- Contaminated Arid Soils Project of the Landfill Stabilization Focus Area Program

Description: The Landfill Stabilization Focus Area (LSFA) is a program funded by the US Department of Energy Office of Technology Development. LSFA supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The TRU-Contaminated Arid Soils project is being conducted under the auspices of the LSFA Program. This document describes the Environment, Safety, Health, and Quality requirements for conducting LSFA/Arid Soils activities at the Idaho National Engineering Laboratory. Topics discussed in this report, as they apply to LSFA/Arid Soils operations, include Federal, State of Idaho, and Environmental Protection Agency regulations, Health and Safety Plans, Quality Program, Data Quality Objectives, and training and job hazard analysis. Finally, a discussion is given on CERCLA criteria and system and performance audits as they apply to the LSFA Program.
Date: June 1, 1995
Creator: Watson, L.R.
Partner: UNT Libraries Government Documents Department

Generalized chloride mass balance: Forward and inverse solutions for one-dimensional tracer convection under transient flux

Description: Forward and inverse solutions are provided for analysis of inert tracer profiles resulting from one-dimensional convective transport under fluxes which vary with time and space separately. The developments are displayed as an extension of conventional chloride mass balance (CMB) techniques to account for transient as well as space-dependent water fluxes. The conventional chloride mass balance has been used over two decades to estimate recharge over large time scales in arid environments. In this mass balance approach, the chloride concentration in the pore water, originating from atmospheric fallout, is inversely proportional to the flux of water through the sediments. The CMB method is especially applicable to arid and semi-arid regions where evapotranspirative enrichment of the pore water produces a distinct chloride profile in the unsaturated zone. The solutions presented allow incorporation of transient fluxes and boundary conditions in CMB analysis, and allow analysis of tracer profile data which is not constant with depth below extraction zone in terms of a rational water transport model. A closed-form inverse solution is derived which shows uniqueness of model parameter and boundary condition (including paleoprecipitation) estimation, for the specified flow model. Recent expressions of the conventional chloride mass balance technique are derived from the general model presented here; the conventional CMB is shown to be fully compatible with this transient flow model and it requires the steady-state assumption on chloride mass deposition only (and not on water fluxes or boundary conditions). The solutions and results are demonstrated on chloride profile data from west central New Mexico.
Date: December 1, 1996
Creator: Ginn, T.R. & Murphy, E.M.
Partner: UNT Libraries Government Documents Department

Estimating nonlinear mixing effects for arid vegetation scenes with MISR channels and observation directions

Description: A Monte-Carlo ray-trace model has been applied to simulated sparse vegetation desert canopies in an effort to quantify the spectral mixing (both linear and nonlinear) occurring as a result of radiative interactions between vegetation and soil. This work is of interest as NASA is preparing to launch new instruments such as MISR and MODIS. MISR will observe each ground pixel from nine different directions in three visible channels and one near-infrared channel. It is desired to study angular variations in spectral mixing by quantifying the amount of nonlinear spectral mixing occurring in the MISR observing directions.
Date: December 1, 1998
Creator: Villeneuve, P.V.; Gerstl, S.A. & Asner, G.P.
Partner: UNT Libraries Government Documents Department

Landfill cover revegetation using organic amendments and cobble mulch in the arid southwest

Description: Cobble mulch and composted biosolids, greenwaste, and dairy manure were added to arid soil in an attempt to improve plant establishment and production, minimize erosion, increase evapotranspiration, and reduce leaching. Twenty-four plots (10 x 10 m) were established in a completely randomized block design (8 treatments, 3 plots per treatment). Treatments included (1) non-irrigated control, (2) irrigated control, (3) non-irrigated greenwaste compost (2.5 yd{sup 3} per plot), (4) irrigated greenwaste compost (5 yd{sup 3} per plot), (5) non-irrigated biosolids compost (2.5 yd{sup 3} per plot), (6) irrigated biosolids compost (5 yd{sup 3} per plot), (7) cobble-mulch, and (8) non-irrigated dairy manure compost (2.5 yd{sup 3} per plot). Soil samples were collected from each plot for laboratory analyses to assess organic matter contents, macro-nutrient levels and trace metal contents, and nitrogen mineralization potential. All plots were seeded similarly with approximately equal portions of cool and warm season native grasses. The organic composts (greenwaste, biosolids, dairy manure) added to the soils substantially increased soil organic matter and plant nutrients including total nitrogen and phosphorus. However, the results of a laboratory study of the soils' nitrogen mineralization potential after the application of the various composts showed that the soil nitrogen-supplying capability decreased to non-amended soil levels by the start of the second growing season. Thus, from the standpoint of nitrogen fertilizer value, the benefits of the organic compost amendments appear to have been relatively short-lived. The addition of biosolids compost, however, did not produce significant changes in the soils' copper, cadmium, lead, and zinc concentrations and thus did not induce adverse environmental conditions due to excessive heavy metal concentrations. Supplemental irrigation water during the first and second growing seasons did not appear to increase plant biomass production in the irrigated control plots over that produced in the non-irrigated control plots. This surprising result ...
Date: February 1, 2000
Partner: UNT Libraries Government Documents Department

Disposal of high-level nuclear waste above the water table in arid regions

Description: Locating a repository in the unsaturated zone of arid regions eliminates or simplifies many of the technological problems involved in designing a repository for operation below the water table and predicting its performance. It also offers possible accessibility and ease of monitoring throughout the operational period and possible retrieval of waste long after. The risks inherent in such a repository appear to be no greater than in one located in the saturated zone; in fact, many aspects of such a repository`s performance will be much easier to predict and the uncertainties will be reduced correspondingly. A major new concern would be whether future climatic changes could produce significant consequences due to possible rise of the water table or increased flux of water through the repository. If spent fuel were used as a waste form, a second new concern would be the rates of escape of gaseous {sup 129}I and {sup 14}C to the atmosphere.
Date: December 31, 1983
Creator: Roseboom, E.H. Jr.
Partner: UNT Libraries Government Documents Department

Late Tertiary and Quaternary geology of the Tecopa basin, southeastern California

Description: Stratigraphic units in the Tecopa basin, located in southeastern California, provide a framework for interpreting Quaternary climatic change and tectonism along the present Amargosa River. During the late Pliocene and early Pleistocene, a climate that was appreciably wetter than today`s sustained a moderately deep lake in the Tecopa basin. Deposits associated with Lake Tecopa consists of lacustrine mudstone, conglomerate, volcanic ash, and shoreline accumulations of tufa. Age control within the lake deposits is provided by air-fall tephra that are correlated with two ash falls from the Yellowstone caldera and one from the Long Valley caldera. Lake Tecopa occupied a closed basin during the latter part, if not all, of its 2.5-million-year history. Sometime after 0.5 m.y. ago, the lake developed an outlet across Tertiary fanglomerates of the China Ranch Beds leading to the development of a deep canyon at the south end of the basin and establishing a hydrologic link between the northern Amargosa basins and Death Valley. After a period of rapid erosion, the remaining lake beds were covered by alluvial fans that coalesced to form a pediment in the central part of the basin. Holocene deposits consist of unconsolidated sand and gravel in the Amargosa River bed and its deeply incised tributaries, a small playa near Tecopa, alluvial fans without pavements, and small sand dunes. The pavement-capped fan remnants and the Holocene deposits are not faulted or tilted significantly, although basins to the west, such as Death Valley, were tectonically active during the Quaternary. Subsidence of the western basins strongly influenced late Quaternary rates of deposition and erosion in the Tecopa basin.
Date: December 31, 1987
Creator: Hillhouse, J. W.
Partner: UNT Libraries Government Documents Department