17 Matching Results

Search Results

Advanced search parameters have been applied.

Cultured human astrocytes secrete large cholesteryl ester- andtriglyceride-rich lipoproteins along with endothelial lipase

Description: We cultured normal human astrocytes and characterized their secreted lipoproteins. Human astrocytes secreted lipoproteins in the size range of plasma VLDL (Peak 1), LDL (Peak 2), HDL (Peak 3) and a smaller peak (Peak 4), as determined by gel filtration chromatography, nondenaturing gradient gel electrophoresis and transmission electron microscopy. Cholesterol enrichment of astrocytes led to a particular increase in Peak 1. Almost all Peak 2, 3 and 4 cholesterol and most Peak 1 cholesterol was esterified (unlike mouse astrocyte lipoproteins, which exhibited similar peaks but where cholesterol was predominantly non-esterified). Triglycerides were present at about 2/3 the level of cholesterol. LCAT was detected along with two of its activators, apolipoprotein (apo) A-IV and apoC-I. ApoA-I and apoA-II mRNA and protein were absent. ApoJ was present equally in all peaks but apoE was present predominantly in peaks 3 and 4. ApoB was not detected. The electron microscopic appearance of Peak 1 lipoproteins suggested partial lipolysis leading to the detection of a heparin-releasable triglyceride lipase consistent with endothelial lipase. The increased neuronal delivery of lipids from large lipoprotein particles, for which apoE4 has greater affinity than does apoE3, may be a mechanism whereby the apoE {var_epsilon}4 allele contributes to neurodegenerative risk.
Date: December 1, 2003
Creator: Yang, Lin; Liu, Yanzhu; Forte, Trudy M.; Chisholm, Jeffrey W.; Parks, John S. & Shachter, Neil S.
Partner: UNT Libraries Government Documents Department

A prominent large high-density lipoprotein at birth enriched in apolipoprotein C-I identifies a new group of infancts of lower birth weight and younger gestational age

Description: Because low birth weight is associated with adverse cardiovascular risk and death in adults, lipoprotein heterogeneity at birth was studied. A prominent, large high-density lipoprotein (HDL) subclass enriched in apolipoprotein C-I (apoC-I) was found in 19 percent of infants, who had significantly lower birth weights and younger gestational ages and distinctly different lipoprotein profiles than infants with undetectable, possible or probable amounts of apoC-I-enriched HDL. An elevated amount of an apoC-I-enriched HDL identifies a new group of low birth weight infants.
Date: October 1, 2003
Creator: Kwiterovich Jr., Peter O.; Cockrill, Steven L.; Virgil, Donna G.; Garrett, Elizabeth; Otvos, James; Knight-Gibson, Carolyn et al.
Partner: UNT Libraries Government Documents Department

Independent effects of apolipoprotein AV and apolipoprotein CIII on plasma triglyceride concentrations

Description: Both the apolipoprotein A5 and C3 genes have repeatedly been shown to play an important role in determining plasma triglyceride concentrations in humans and mice. In mice, transgenic and knockout experiments indicate that plasma triglyceride levels are negatively and positively correlated with APOA5 and APOC3 expression, respectively. In humans, common polymorphisms in both genes have also been associated with plasma triglyceride concentrations. The evolutionary relationship among these two apolipoprotein genes and their close proximity on human chromosome 11q23 have largely precluded the determination of their relative contribution to altered Both the apolipoprotein A5 and C3 genes have repeatedly been shown to play an important role in determining plasma triglyceride concentrations in humans and mice. In mice, transgenic and knockout experiments indicate that plasma triglyceride levels are negatively and positively correlated with APOA5 and APOC3 expression, respectively. In humans, common polymorphisms in both genes have also been associated with plasma triglyceride concentrations. The evolutionary relationship among these two apolipoprotein genes and their close proximity on human chromosome 11q23 have largely precluded the determination of their relative contribution to altered triglycerides. To overcome these confounding factors and address their relationship, we generated independent lines of mice that either over-expressed (''double transgenic'') or completely lacked (''double knockout'') both apolipoprotein genes. We report that both ''double transgenic'' and ''double knockout'' mice display intermedia tetriglyceride concentrations compared to over-expression or deletion of either gene alone. Furthermore, we find that human ApoAV plasma protein levels in the ''double transgenic'' mice are approximately 500-fold lower than human ApoCIII levels, supporting ApoAV is a potent triglyceride modulator despite its low concentration. Together, these data indicate that APOA5 and APOC3 independently influence plasma triglyceride concentrations but in an opposing manner.
Date: August 15, 2003
Creator: Baroukh, Nadine N.; Bauge, Eric; Akiyama, Jennifer; Chang, Jessie; Fruchart, Jean-Charles; Rubin, Edward M. et al.
Partner: UNT Libraries Government Documents Department

Expression profiling and comparative sequence derived insights into lipid metabolism

Description: Expression profiling and genomic DNA sequence comparisons are increasingly being applied to the identification and analysis of the genes involved in lipid metabolism. Not only has genome-wide expression profiling aided in the identification of novel genes involved in important processes in lipid metabolism such as sterol efflux, but the utilization of information from these studies has added to our understanding of the regulation of pathways participating in the process. Coupled with these gene expression studies, cross species comparison, searching for sequences conserved through evolution, has proven to be a powerful tool to identify important non-coding regulatory sequences as well as the discovery of novel genes relevant to lipid biology. An example of the value of this approach was the recent chance discovery of a new apolipoprotein gene (apo AV) that has dramatic effects upon triglyceride metabolism in mice and humans.
Date: December 19, 2001
Creator: Callow, Matthew J. & Rubin, Edward M.
Partner: UNT Libraries Government Documents Department

Phosphorylation-dependent down-regulation of apolipoprotein A5 by insulin

Description: The apolipoprotein A5 (APOA5) gene has been shown to be important in lowering plasma triglyceride levels. Since several studies have shown that hyperinsulinemia is associated with hypertriglyceridemia, we sought to determine whether APOA5 gene is regulated by insulin. We show here that cell and mouse treatments with insulin down-regulated APOA5 expression in a dose-dependent manner. Furthermore, we determined that insulin decreases APOA5 promoter activity and subsequent deletion analyses revealed an E-box-containing fragment. We showed that Upstream Stimulatory Factors, USF1/USF2, bind to the identified E-box in the APOA5 promoter. Moreover, in cotransfection studies, USF1 stimulates APOA5 promoter activity. The treatment with insulin reduces the binding of USF1/USF2 to APOA5 promoter. The inhibition of PI3K pathway with wortmannin abolished the insulin s effect on APOA5 gene transcription. Using oligoprecipitation method of USF from nuclear extracts, we demonstrated that phosphorylated USF1 failed to bind to APOA5 promoter. This indicates that the APOA5 gene transrepression by insulin involves a phosphorylation of USF through PI3K, that modulate their binding to APOA5 promoter and results in APOA5 down-regulation. The effect of exogenous hyperinsulinemia in healthy men shows a decrease of the plasma ApoAV level. These data suggest a potential mechanism involving APOA5 gene in hypertriglyceridemia associated with hyperinsulinemia.
Date: February 15, 2004
Creator: Nowak, Maxine; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Rommens, Corinne; Martin, Genevieve; Duran-Sandoval, Daniel et al.
Partner: UNT Libraries Government Documents Department

In Vivo Characterization of Human APOA5 Haplotypes

Description: Increased plasma triglycerides concentrations are an independent risk factor for cardiovascular disease. Numerous studies support a reproducible genetic association between two minor haplotypes in the human apolipoprotein A5 gene (APOA5) and increased plasma triglyceride concentrations. We thus sought to investigate the effect of these minor haplotypes (APOA5*2 and APOA5*3) on ApoAV plasma levels through the precise insertion of single-copy intact APOA5 haplotypes at a targeted location in the mouse genome. While we found no difference in the amount of human plasma ApoAV in mice containing the common APOA5*1 and minor APOA5*2 haplotype, the introduction of the single APOA5*3 defining allele (19W) resulted in 3-fold lower ApoAV plasma levels consistent with existing genetic association studies. These results indicate that S19W polymorphism is likely to be functional and explain the strong association of this variant with plasma triglycerides supporting the value of sensitive in vivo assays to define the functional nature of human haplotypes.
Date: October 1, 2006
Creator: Ahituv, Nadav; Akiyama, Jennifer; Chapman-Helleboid, Audrey; Fruchart, Jamila & Pennacchio, Len A.
Partner: UNT Libraries Government Documents Department

Apolipoprotein AIF gene variant S347 is associated with increased risk of coronary heart disease and lower apolipoprotein AIV plasma concentrations

Description: The impact of common variants in the apolipoprotein gene cluster (APOC3-A4-A5) on prospective CHD risk was examined in healthy UK men. Of the 2808 men followed over nine years, 187 had a clinically defined CHD event. Examination of 9 single nucleotide polymorphisms (SNPs) in this group revealed that homozygotes for APOA4 S347 had significantly increased risk of CHD [Hazard ratio (HR) of 2.07 (95%CI 1.04-4.12)] while men homozygous for APOC3 1100T were protected (HR 0.28 (95%CI 0.09-0.87)). In stepwise multiple regression analysis, after entering all the variants and adjusting for established risk factors APOA4 T347S alone remained in the model. Using nine-SNP haplotype analysis, highest risk-estimate haplotypes carried APOA4 S347 and rare alleles of the two flanking intergenic markers. The protective effect of APOC31100T could be explained by negative linkage disequilibrium with these alleles. To determine the association of APOA4 T347S with apoAIVlevels, the relationship was examined in over 1600 healthy young European men and women. S347 homozygotes had significantly lower apoAIV plasma levels (13.48 + 0.6mg/dl) compared to carriers of the T347 allele (14.85 + 0.12 mg/dl) (p=0.025). These results demonstrate that genetic variation in and around APOA4, independent of effects of TG, is associated with risk of CHD and apoAIV levels, supporting an anti-atherogenic role for apoAIV.
Date: January 30, 2003
Creator: Wong, Wai-man R.; Hawe, Emma; Li, Lai K.; Miller, George J.; Nicaud, Viviane; Pennacchio, Len A. et al.
Partner: UNT Libraries Government Documents Department

Haplotypes in the APOA1-C3-A4-A5 gene cluster affect plasma lipids in both humans and baboons

Description: Genetic studies in non-human primates serve as a potential strategy for identifying genomic intervals where polymorphisms impact upon human disease-related phenotypes. It remains unclear, however, whether independently arising polymorphisms in orthologous regions of non-human primates leads to similar variation in a quantitative trait found in both species. To explore this paradigm, we studied a baboon apolipoprotein gene cluster (APOA1/C3/A4/A5) for which the human gene orthologs have well established roles in influencing plasma HDL-cholesterol and triglyceride concentrations. Our extensive polymorphism analysis of this 68 kb gene cluster in 96 pedigreed baboons identified several haplotype blocks each with limited diversity, consistent with haplotype findings in humans. To determine whether baboons, like humans, also have particular haplotypes associated with lipid phenotypes, we genotyped 634 well characterized baboons using 16 haplotype tagging SNPs. Genetic analysis of single SNPs, as well as haplotypes, revealed an association of APOA5 and APOC3 variants with HDL cholesterol and triglyceride concentrations, respectively. Thus, independent variation in orthologous genomic intervals does associate with similar quantitative lipid traits in both species, supporting the possibility of uncovering human QTL genes in a highly controlled non-human primate model.
Date: September 15, 2003
Creator: Wang, Qian-fei; Liu, Xin; O'Connell, Jeff; Peng, Ze; Krauss, Ronald M.; Rainwater, David L. et al.
Partner: UNT Libraries Government Documents Department

Characterization and Reconstruction of Nanolipoprotein Particles (Nlps) by Cryo-EM and Image Reconstruction

Description: Nanolipoprotein particles (NLPs) are small 10-20 nm diameter assemblies of apolipoproteins and lipids. At Lawrence Livermore National Laboratory (LLNL), they have constructed multiple variants of these assemblies. NLPs have been generated from a variety of lipoproteins, including apolipoprotein Al, apolipophorin III, apolipoprotein E4 22K, and MSP1T2 (nanodisc, Inc.). Lipids used included DMPC (bulk of the bilayer material), DMPE (in various amounts), and DPPC. NLPs were made in either the absence or presence of the detergent cholate. They have collected electron microscopy data as a part of the characterization component of this research. Although purified by size exclusion chromatography (SEC), samples are somewhat heterogeneous when analyzed at the nanoscale by negative stained cryo-EM. Images reveal a broad range of shape heterogeneity, suggesting variability in conformational flexibility, in fact, modeling studies point to dynamics of inter-helical loop regions within apolipoproteins as being a possible source for observed variation in NLP size. Initial attempts at three-dimensional reconstructions have proven to be challenging due to this size and shape disparity. They are pursuing a strategy of computational size exclusion to group particles into subpopulations based on average particle diameter. They show here results from their ongoing efforts at statistically and computationally subdividing NLP populations to realize greater homogeneity and then generate 3D reconstructions.
Date: June 7, 2007
Creator: Pesavento, J B; Morgan, D; Bermingham, R; Zamora, D; Chromy, B; Segelke, B et al.
Partner: UNT Libraries Government Documents Department

Glucose Regulates the Expression of the Apolipoprotein A5 Gene

Description: The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. D-glucose activates APOA5 gene expression in a time- and dose-dependent manner in hepatocytes, and the glycolytic pathway involved was determined using D-glucose analogs and metabolites. Together, transient transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays show that this regulation occurs at the transcriptional level through an increase of USF1/2 binding to an E-box in the APOA5 promoter. We show that this phenomenon is not due to an increase of mRNA or protein expression levels of USF. Using protein phosphatases 1 and 2A inhibitor, we demonstrate that D-glucose regulates APOA5 gene via a dephosphorylation mechanism, thereby resulting in an enhanced USF1/2-promoter binding. Last, subsequent suppressions of USF1/2 and phosphatases mRNA through siRNA gene silencing abolished the regulation. We demonstrate that APOA5 gene is up regulated by D-glucose and USF through phosphatase activation. These findings may provide a new cross talk between glucose and lipid metabolism.
Date: April 7, 2008
Creator: Fruchart, Jamila; Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Moitrot, Emmanuelle; Rommens, Corinne et al.
Partner: UNT Libraries Government Documents Department

Amphotericin B induced interdigitation of apolipoprotein stabilized nanodisk bilayers

Description: Amphotericin B nanodisks (AMB-ND) are ternary complexes of AMB, phospholipid (PL) and apolipoprotein organized as discrete nanometer scale disk-shaped bilayers. In gel filtration chromatography experiments, empty ND lacking AMB elute as a single population of particles with a molecular weight in the range of 200 kDa. AMB-ND formulated at a 4:1 PL:AMB weight ratio, separated into two peaks. Peak 1 eluted at the position of control ND lacking AMB while the second peak, containing all of the AMB present in the original sample, eluted in the void volume. When ND prepared with increased AMB (1:1 phospholipid:AMB molar ratio) were subjected to gel filtration chromatography, an increased proportion of phospholipid and apolipoprotein were recovered in the void volume with the AMB. Prior to gel filtration the AMB-ND sample could be passed through a 0.22 {micro}m filter without loss of AMB while the voided material was lost. Native gel electrophoresis studies corroborated the gel permeation chromatography data. Far UV circular dichroism analyses revealed that apoA-I associated with AMB-ND denatures at a lower guanidine HCl concentration than apoA-I associated with ND lacking AMB. Atomic force microscopy revealed that AMB induces compression of the ND bilayer thickness consistent with bilayer interdigitation, a phenomenon that is likely related to the ability of AMB to induce pore formation in susceptible membranes.
Date: December 7, 2006
Creator: Nguyen, T; Weers, P M; Sulchek, T; Hoeprich, P D & Ryan, R O
Partner: UNT Libraries Government Documents Department

Apolipoprotein B-containing lipoprotein particle assembly: Lipid capacity of the nascent lipoprotein particle

Description: We previously proposed that the N-terminal 1000 residue {beta}{alpha}{sub 1} domain of apolipoprotein B (apoB) forms a bulk lipid pocket homologous to that of lamprey lipovitellin (LV). In support of this ''lipid pocket'' hypothesis, apoB:1000 (residues 1-1000) was shown to be secreted by a stable transformant of McA-RH7777 cells as a monodisperse particle with HDL{sub 3} density and Stokes diameter of 112 {angstrom}. In contrast, apoB:931 (residues 1-931), missing only 69 residues of the sequence homologous to LV, was secreted as a particle considerably more dense than HDL with Stokes diameter of 110 {angstrom}. The purpose of the present study was to determine the stoichiometry of the lipid component of the apoB:931 and apoB:1000 particles. This was accomplished by metabolic labeling of cells with either [{sup 14}C]oleic acid or [{sup 3}H]glycerol followed by immunoprecipitation (IP) or nondenaturing gradient gel electrophoresis (NDGGE) of secreted lipoproteins and by immunoaffinity chromatography of secreted unlabeled lipoproteins. The [{sup 3}H]-labeled apoB:1000-containing particles, isolated by NDGGE, contained 50 phospholipids (PL) and 11 triacylglycerols (TAG) molecules per particle. In contrast, apoB:931-containing particles contained only a few molecules of PL and were devoid of TAG. The unlabeled apoB:1000-containing particles isolated by immunoaffinity chromatography and analyzed for lipid mass, contained 56 PL, 8 TAG, and 7 cholesteryl ester molecules per particle. The surface:core lipid ratio of apoB:1000-containing particles was approximately 4:1 and was not affected by incubation of cells with oleate. Although small amounts of microsomal triglyceride transfer protein (MTP) were associated with apoB:1000-containing particles, it never approached a 1:1 molar ratio of MTP to apoB. These results support a model in which: (1) the first 1000 amino acid residues of apoB are competent to complete the ''lipid pocket'' without a structural requirement for MTP; (2) amino acids between 931 to 1000 of apoB-100 are critical for the formation ...
Date: December 1, 2003
Creator: Manchekar, Medha; Forte, Trudy M.; Datta, Geeta; Richardson, Paul E.; Segrest, Jere P. & Dashti, Nassrin
Partner: UNT Libraries Government Documents Department

Transcriptional Regulation of Apolipoprotein A5 Gene Expression by the Nuclear Receptor ROR alpha

Description: Apolipoprotein A5 has recently been identified as a crucial determinant of plasma triglyceride levels. Our results showed that RORa up-regulates human APOA5 but has no effect on mouse apoa5 promoter. These data suggest an additional important physiological role for RORa in the regulation of genes involved in plasma triglyceride homeostasis in human and probably in the development of atherosclerosis
Date: October 1, 2004
Creator: Genoux, Annelise; Dehondt, Helene; Helleboid-Chapman, Audrey; Duhem, Christian; Hum, Dean W.; Martin, Genevieve et al.
Partner: UNT Libraries Government Documents Department

Mechanism of lipid lowering in mice expressing human apolipoprotein A5

Description: Recently, we reported that apoAV plays key role in triglycerides lowering. Here, we attempted to determine the mechanism underlying this hypotriglyceridemic effect. We showed that triglyceride turnover is faster in hAPOA5 transgenic compared to wild type mice. Moreover, both apoB and apoCIII are decreased and LPL activity is increased in postheparin plasma of hAPOA5 transgenic mice. These data suggest a decrease in size and number of VLDL. To further investigate the mechanism of hAPOA5 in hyperlipidemic background, we intercrossed hAPOA5 and hAPOC3 transgenic mice. The effect resulted in a marked decreased of VLDL triglyceride, cholesterol, apolipoproteins B and CIII. In postprandial state, the triglyceride response is abolished in hAPOA5 transgenic mice. We demonstrated that in response to the fat load in hAPOA5XhAPOC3 mice, apoAV shifted from HDL to VLDL, probably to limit the elevation of triglycerides. In vitro, apoAV activates lipoprotein lipase. However, apoAV does not interact with LPL but interacts physically with apoCIII. This interaction does not seem to displace apoCIII from VLDL but may induce conformational change in apoCIII and consequently change in its function leading the activation of lipoprotein lipase.
Date: January 15, 2004
Creator: Fruchart-Najib, Jamila; Bauge, Eric; Niculescu, Loredan-Stefan; Pham, Tatiana; Thomas, Benoit; Rommens, Corinne et al.
Partner: UNT Libraries Government Documents Department