73 Matching Results

Search Results

Advanced search parameters have been applied.

The Quantitative Determination of Calcite Associated With Carbonate-Bearing Apatites

Description: Report discussing a study in which "the CO₂ combined as calcite in carbonate-bearing apatites has been distinguished from that combined as carbonate-apatite, or present in some form other than calcite, by use of X-ray powder patterns, differential thermal analyses, and differential solubility tests."
Date: August 1951
Creator: Silverman, Sol R.; Fuyat, Ruth K. & Weiser, Jeanne D.
Partner: UNT Libraries Government Documents Department

Formation of Chloropyromorphite from Galena (PbS) in the Presence of Hydroxyapatite

Description: Transformation of unstable lead [Pb(ll)] forms into insoluble pyromorphite, [Pb5(P04)3(OH, Cl, F...)], by addition of phosphate to Pb contaminated soil has been proposed as a remediation technology which reduces the mobility and bioavailability of Pb. Under aerobic condition, oxidation of dissolved sulfide increases dissolution of galena (PbS), causing it to become a source of liable Pb forms in soils, sediments and wastes. Thus, a galena ore was reacted with synthetic hydroxyapatite [Ca5(P04)30H] under various pH condition to determine the formation rate of pyromorphite and the volubility of galena under the ambient conditions. In a 6 day reaction period the dissolution rate of galena increased with pH due to the oxidation of dissolved sulfide. Correspondingly, formation of chloropyrornorphite became apparent in the galena- apatite suspensions with increasing pH. The insignificant effect of mineral P/Pb molar ratio on the formation of chloropyromorphite implied that dissolution of galena was the rate limiting step.
Date: October 14, 1998
Creator: Ryan, J.A. & Zhang, P.
Partner: UNT Libraries Government Documents Department


Description: The prebiotic synthesis of phosphorus-containing compounds--such as nucleotides and polynucleotides--would require both a geologically plausible source of the element and pathways for its incorporation into chemical systems on the primitive Earth. The mineral apatite, which is the only significant source of phosphate on Earth, has long been thought to be problematical in this respect due to its low solubility and reactivity. However, in the last decade or so, at least two pathways have been demonstrated which would circumvent these perceived problems. In addition, recent results would seem to suggest an additional, extraterrestrial source of reactive phosphorus. It appears that the 'phosphorus problem' is no longer the stumbling block which it was once thought to be.
Date: May 1, 1964
Creator: Steinman, Gary; Lemmon, Richard M. & Calvin, Melvin
Partner: UNT Libraries Government Documents Department

Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection

Description: The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.
Date: June 1, 2007
Creator: Vermeul, Vincent R.; Williams, Mark D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R. et al.
Partner: UNT Libraries Government Documents Department

Challenges Associated with Apatite Remediation of Uranium in the 300 Area Aquifer

Description: Sequestration of uranium as insoluble phosphate phases appears to be a promising alternative for treating the uranium-contaminated groundwater at the Hanford 300 Area. The proposed approach involves both the direct formation of autunite by the application of a polyphosphate mixture, as well as the formation of apatite in the aquifer as a continuing source of phosphate for long-term treatment of uranium. After a series of bench-scale tests, a field treatability test was conducted in a well at the 300 Area. The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. The results indicated that while the direct formation of autunite appears to have been successful, the outcome of the apatite formation of the test was more limited. Two separate overarching issues impact the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. This paper summarizes these issues.
Date: May 1, 2008
Creator: Wellman, Dawn M.; Fruchter, Jonathan S.; Vermeul, Vincent R. & Williams, Mark D.
Partner: UNT Libraries Government Documents Department

100-NR-2 Apatite Treatability Test: High-Concentration Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

Description: Following an evaluation of potential strontium-90 (90Sr) treatment technologies and their applicability under 100-NR-2 hydrogeologic conditions, the U.S. Department of Energy (DOE), Fluor Hanford, Inc. (now CH2M Hill Plateau Remediation Company [CHPRC]), Pacific Northwest National Laboratory, and the Washington State Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area should include apatite as the primary treatment technology. This agreement was based on results from an evaluation of remedial alternatives that identified the apatite permeable reactive barrier (PRB) technology as the approach showing the greatest promise for reducing 90Sr flux to the Columbia River at a reasonable cost. This letter report documents work completed to date on development of a high-concentration amendment formulation and initial field-scale testing of this amendment solution.
Date: September 1, 2010
Creator: Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Szecsody, James E. & Williams, Mark D.
Partner: UNT Libraries Government Documents Department

Project Work Plan: Sequestration of Strontium-90 Subsurface Contamination in the Hanford 100-N Area by Surface Infiltration of an Apatite Solution

Description: We propose to develop an infiltration strategy that defines the precipitation rate of an apatite-forming solution and Sr-90 sequestration processes under variably saturated (low water content) conditions. We will develop this understanding through small-scale column studies, intermediate-scale two-dimensional (2-D) experiments, and numerical modeling to quantify individual and coupled processes associated with apatite formation and Sr-90 transport during and after infiltration of the Ca-citrate-PO4 solution. Development of capabilities to simulate these coupled biogeochemical processes during both injection and infiltration will be used to determine the most cost-effective means to emplace an in situ apatite barrier with a longevity of 300 years to permanently sequester Sr-90 until it decays. Biogeochemical processes that will be investigated are citrate biodegradation and apatite precipitation rates at varying water contents as a function of water content. Coupled processes that will be investigated include the influence of apatite precipitation (which occupies pore space) on the hydraulic and transport properties of the porous media during infiltration.
Date: April 30, 2006
Creator: Szecsody, Jim E.
Partner: UNT Libraries Government Documents Department


Description: Active capping involves the use of capping materials that react with sediment contaminants to reduce their toxicity or bioavailability. Although several amendments have been proposed for use in active capping systems, little is known about their long-term ability to sequester metals. Recent research has shown that the active amendment apatite has potential application for metals contaminated sediments. The focus of this study was to evaluate the effectiveness of apatite in the sequestration of metal contaminants through the use of short-term laboratory column studies in conjunction with predictive, numerical modeling. A breakthrough column study was conducted using North Carolina apatite as the active amendment. Under saturated conditions, a spike solution containing elemental As, Cd, Co, Se, Pb, Zn, and a non-reactive tracer was injected into the column. A sand column was tested under similar conditions as a control. Effluent water samples were periodically collected from each column for chemical analysis. Relative to the non-reactive tracer, the breakthrough of each metal was substantially delayed by the apatite. Furthermore, breakthrough of each metal was substantially delayed by the apatite compared to the sand column. Finally, a simple 1-D, numerical model was created to qualitatively predict the long-term performance of apatite based on the findings from the column study. The results of the modeling showed that apatite could delay the breakthrough of some metals for hundreds of years under typical groundwater flow velocities.
Date: February 13, 2012
Creator: Dixon, K. & Knox, A.
Partner: UNT Libraries Government Documents Department

Very first tests on SOLEIL regarding the Zn environment in pathological calcifications made of apatite determined by X-ray absorption spectroscopy

Description: This very first report of a X-ray absorption spectroscopy experiment on Soleil is part of a more large long term study dedicated to ectopic calcifications. Such biological entities composed of various inorganic and/or organic compounds contain also trace elements. In the case of urinary calculi, different papers already published point out that these oligo elements may promote or inhibit crystal nucleation or growth of mineral or organic species involved. By using such tool specific to synchrotron radiation i.e. determine the local environment of oligoelements and thus their occupation site, we contribute to our understanding of the role of trace elements in ectopic calcifications.
Date: October 1, 2008
Creator: Bazin, D.; Carpentier, X.; Traxer, O.; Thiaudiere, D.; Somogyi, A.; Reguer, S. et al.
Partner: UNT Libraries Government Documents Department

Reduction of Contaminant Mobility at the TNX Outfall Delta Through the Use of Apatite and Zero-Valent Iron as Soil Amendments

Description: The TNX pilot-scale research facility released processed waste, containing high concentrations of several metals and radionuclides into an unlined seepage basin between 1958 and 1980. The contents of this basin have entered the nearby swamp, the TNX Outfall Delta (TNX OD), by subsurface and overland flow. A multi-faceted strategy has been proposed recently for mitigating contaminant migration at the site. The intent of this remediation strategy is not only to minimize contaminant leaching in a cost-effective manner, but also to minimize harm to the sensitive TNX wetland ecosystem.
Date: December 18, 2002
Creator: Kaplan, D.
Partner: UNT Libraries Government Documents Department

Next-generation laser for Inertial Confinement Fusion

Description: We report on the progress in developing and building the Mercury laser system as the first in a series of a new generation of diode- pumped solid-state Inertial Confinement Fusion (ICF) lasers at Lawrence Livermore National Laboratory (LLNL). Mercury will be the first integrated demonstration of a scalable laser architecture compatible with advanced high energy density (HED) physics applications. Primary performance goals include 10% efficiencies at 10 Hz and a 1-10 ns pulse with 1 omega energies of 100 J and with 2 omega/3 omega frequency conversion.
Date: September 29, 1997
Creator: Marshall, C.D.; Deach, R.J. & Bibeau, C.
Partner: UNT Libraries Government Documents Department

Hydroxylapatite Otologic Implants

Description: A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Research Corporation (LMER) and Smith and Nephew Richards Inc. of Bartlett, TN, was initiated in March 1997. The original completion date for the Agreement was March 25, 1998. The purpose of this work is to develop and commercialize net shape forming methods for directly creating dense hydroxylapatite (HA) ceramic otologic implants. The project includes three tasks: (1) modification of existing gelcasting formulations to accommodate HA slurries; (2) demonstration of gelcasting to fabricate green HA ceramic components of a size and shape appropriate to otologic implants: and (3) sintering and evaluation of the HA components.
Date: January 1, 2000
Creator: McMillan, A.D.; Lauf, R.J.; Beale, B. & Johnson, R.
Partner: UNT Libraries Government Documents Department

Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

Description: An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises ytterbium doped apatite (Yb:Ca{sub 5}(PO{sub 4}){sub 3}F) or Yb:FAP, or ytterbium doped crystals structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode.
Date: December 31, 1991
Creator: Krupke, W.F.; Payne, S.A.; Chase, L.L. & Smith, L.K.
Partner: UNT Libraries Government Documents Department

Influence of Sediment Redox Conditions on Contaminant Stabilization by Apatite and FE(0)

Description: Efficacy of stabilizing Ce, Co, and Pb by adding apatite and zero-valent Fe (Fe(0)) to contaminated wetland sediments was quantified under oxidizing and reducing conditions. The redox status and the general water chemistry of the oxidized and reduced treatments differed greatly, yet the influences of the amendments on contaminant stabilization were quite similar; both amendments significantly (p less than or equal to 0.05) reduced aqueous contaminant concentrations. Based on resin sorption studies and thermodynamic calculations, Ce existed primarily as cationic and to a smaller extent, anionic species, and Co existed almost as cationic, neutral, and organically complexed species. Based on a series of varying selective extractions, almost 50 wt-percentage of the Co and Pb were already strongly bound to the sediment, thereby limiting the potential (and need) of affecting additional immobilization through the use of amendments.
Date: May 17, 2004
Creator: KAPLAN, D.I.
Partner: UNT Libraries Government Documents Department

Mineralization of Synthetic Polymer Scaffolds: A Bottom-upApproach for the Development of Artificial Bone

Description: The controlled integration of organic and inorganic components confers natural bone with superior mechanical properties. Bone biogenesis is thought to occur by templated mineralization of hard apatite crystals by an elastic protein scaffold, a process we sought to emulate with synthetic biomimetic hydrogel polymers. Crosslinked polymethacrylamide and polymethacrylate hydrogels were functionalized with mineral-binding ligands and used to template the formation of hydroxyapatite. Strong adhesion between the organic and inorganic materials was achieved for hydrogels functionalized with either carboxylate or hydroxy ligands. The mineral-nucleating potential of hydroxyl groups identified here broadens the design parameters for synthetic bone-like composites and suggests a potential role for hydroxylated collagen proteins in bone mineralization.
Date: September 27, 2004
Creator: Song, Jie; Viengkham, Malathong & Bertozzi, Carolyn R.
Partner: UNT Libraries Government Documents Department

Phosphate Mineral Source Evaluation and Zone-of-Influence Estimates for Sediment Contaminant Amendments at the TNX Outfall Delta Operable Unit

Description: The TNX pilot-scale research facility released processed waste, containing elevated concentrations of several metals and radionuclides into an unlined seepage basin between 1958 and 1980. The contents of this basin have entered the nearby swamp, the TNX Outfall Delta (TNX OD), by subsurface and overland flow. Studies were conducted to evaluate whether sediment amendments could be used to reduce contaminant mobility and bioavailability. Previous studies showed that the addition of a phosphate mineral, apatite, and zero-valent iron, Fe(0), were effective at immobilizing a broad range of contaminants at the site. It is anticipated that the sediment amendments will be broadcast on the ground surface and backfilled into drilled 2 cm diameter x 15 cm deep holes spaced across the contaminated area. The amendments' zone-of-influence of these two application methods was conducted to permit treatment design. The objective of this study was to determine (1) which source of phosphate mineral is most suitable for sediment-contaminant stabilization, and (2) what is the extent of the zone-of-influence of applied apatite and Fe(0).
Date: July 6, 2004
Creator: KAPLAN, DI
Partner: UNT Libraries Government Documents Department

100-NR-2 Apatite Treatability Test: Fall 2010 Tracer Infiltration Test (White Paper)

Description: The primary objectives of the tracer infiltration test were to 1) determine whether field-scale hydraulic properties for the compacted roadbed materials and underlying Hanford fm. sediments comprising the zone of water table fluctuation beneath the site are consistent with estimates based laboratory-scale measurements on core samples and 2) characterize wetting front advancement and distribution of soil moisture achieved for the selected application rate. These primary objectives were met. The test successfully demonstrated that 1) the remaining 2 to 3 ft of compacted roadbed material below the infiltration gallery does not limit infiltration rates to levels that would be expected to eliminate near surface application as a viable amendment delivery approach and 2) the combined aqueous and geophysical monitoring approaches employed at this site, with some operational adjustments based on lessons learned, provides an effective means of assessing wetting front advancement and the distribution of soil moisture achieved for a given solution application. Reasonably good agreement between predicted and observed tracer and moisture front advancement rates was observed. During the first tracer infiltration test, which used a solution application rate of 0.7 cm/hr, tracer arrivals were observed at the water table (10 to 12 ft below the bottom of the infiltration gallery) after approximately 5 days, for an advancement rate of approximately 2 ft/day. This advancement rate is generally consistent with pre-test modeling results that predicted tracer arrival at the water table after approximately 5 days (see Figure 8, bottom left panel). This agreement indicates that hydraulic property values specified in the model for the compacted roadbed materials and underlying Hanford formation sediments, which were based on laboratory-scale measurements, are reasonable estimates of actual field-scale conditions. Additional work is needed to develop a working relationship between resistivity change and the associated change in moisture content so that 4D images of moisture ...
Date: April 14, 2011
Creator: Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Greenwood, William J.; Johnson, Timothy C.; Horner, Jacob A. et al.
Partner: UNT Libraries Government Documents Department


Description: This study evaluated pilot-scale active caps composed of apatite, organoclay, biopolymers, and sand for the remediation of metal-contaminated sediments. The active caps were constructed in Steel Creek, at the Savannah River Site near Aiken, South Carolina. Monitoring was conducted for 12 months. Effectiveness of the caps was based on an evaluation of contaminant bioavailability, resistance to erosion, and impacts on benthic organisms. Active caps lowered metal bioavailability in the sediment during the one-year test period. Biopolymers reduced sediment suspension during cap construction, increased the pool of carbon, and lowered the release of metals. This field validation showed that active caps can effectively treat contaminants by changing their speciation, and that caps can be constructed to include more than one type of amendment to achieve multiple goals.
Date: February 13, 2012
Creator: Knox, A.; Paller, M. & Roberts, J.
Partner: UNT Libraries Government Documents Department


Description: This report documents the effort to sequester technetium by the use of getters, reductants (tin(II) apatite and ferrous sulfate), sorbents (A530E and A532E ion exchange resins), and cementitious waste form. The pertechnetate form of technetium is highly soluble and mobile in aerobic (oxidizing) environments.
Date: July 20, 2009
Creator: Duncan, J. B.; Cooke, G. A. & Lockrem, L. L.
Partner: UNT Libraries Government Documents Department


Description: Efforts to reduce the flux of Sr-90 to the Columbia River from Hanford Site 100-N Area past-practice liquid waste disposal sites have been underway since the early 1990s. Termination of all liquid discharges to the ground in 1993 was a major step toward meeting this goal. However, Sr-90 adsorbed on aquifer solids beneath liquid waste disposal sites and extending beneath the near-shore riverbed remains a continuing contaminant source to groundwater and the Columbia River. The initial pump-and-treat system proved to be ineffective as a long-term solution because of the geochemical characteristics of Sr-90. Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100-NR-2 Operable Unit hydrogeologic conditions, the U.S. Department of Energy and the Washington State Department of Ecology agreed to evaluate apatite sequestration as the primary remedial technology, combined with a secondary polishing step utilizing phytoextraction if necessary. Aqueous injection was initiated in July 2005 to assess the efficacy of in-situ apatite along the 100 m of shoreline where Sr-90 concentrations are highest. The remedial technology is being developed by Pacific Northwest National Laboratory. CH2M Hill Plateau Remediation Company is implementing this technology in the field with support from PNNL.
Date: December 8, 2008
Creator: RJ, FABRE
Partner: UNT Libraries Government Documents Department

X-ray photo-emission and energy dispersive spectroscopy of HA coated titanium

Description: The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (x-ray photo-emission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls, 30 minutes and 3 hours aged specimens in distilled water or 0.2M sodium phosphate buffer (pH 7.2) at room temperature. Each x-ray photo-emission cycle consisted of 3 scans followed by argon sputtering for 10 minutes for a total of usually 20 cycles, corresponding to a sampling depth of {approximately} 1500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {mu}m area for 500 sec. Scanning electron microscopy examination showed crystal formation (3P{sub 2}O{sub 5}*2CAO*?H{sub 2}O by energy dispersive spectroscopy analysis) on the HA coating for the specimens aged in sodium phosphate buffer. The x-ray photo-emission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorous. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis. The crystal growth was only observed for the sodium phosphate buffer specimens and only on the HA surface.
Date: August 1, 1997
Creator: Drummond, J.L.; Steinberg, A.D. & Krauss, A.R.
Partner: UNT Libraries Government Documents Department

Formation of Chloropyromorphite in a Lead-Contaminated Soil Amended with Hydroxyapatite

Description: To confirm conversion of soil Pb to pyromorphite [Pb{sub 5}(PO{sub 4}){sub 3}Cl], a Pb contaminated soil collected adjacent to a historical smelter was reacted with hydroxyapatite in slurries of soil and hydroxyapatite separated by a dialysis membrane and incubated. A crystalline precipitate formed on the dialysis membrane in the slurry systems was identified as chloropyromorphite. Soluble species measured in the soil slurry indicated that dissolution of solid-phase soil Pb was the rate-limiting step for pyromorphite formation. Additionally samples reacted with hydroxyapatite were incubated at field-capacity moisture content. The sequential chemical extraction used to identify species in the field-moist soil incubation experiment showed that hydroxyapatite treatment reduced the first four fractions of extractable Pb and correspondingly increased the recalcitrant extraction residue fraction by 35% of total Pb at 0 d incubation and by 45% after 240 d incubation. the increase in the extraction residue fraction in the 240 d incubation as compared to the 0 d incubation implies that the reaction occurs in the soil but the increase in the hydroxyapatite amended 0 d incubated soil as compared to the control soil illustrates the chemical extraction procedure caused changes in the extractability. Thus, the chemical extraction procedure cannot easily be utilized to confirm changes occurring in the soil as a result of incubation. Extended x-ray absorption fine structure (EXAFS) spectroscopy indicated that the 240 d incubated hydroxyapatite treatment caused a change in the average, local molecular bonding environment of soil Pb. Low-temperature EXAFS spectra (chi data and radial structure functions - RSFs) showed a high degree of similarity between the chemical extraction residue and synthetic pyromorphite. Thus, confirming that the change of soil Pb to pyromorphite is possible by simple amendments of hydroxyapatite to soil.
Date: July 14, 2000
Partner: UNT Libraries Government Documents Department

A multilayer approach to fabricate bioactive glass coatings on Ti alloys

Description: Glasses in the system Si-Ca-Na-Mg-P-K-O with thermal expansion coefficients close to that of Ti6Al4V were used to coat the titanium alloy by a simple enameling technique. Firings were done in air at temperatures between 800 and 840 C and times up to 1 minute. Graded compositions were obtained by firing multilayered glass coatings. Hydroxyapatite (HA) particles were mixed with the glass powder and the mixture was placed on the outer surface of the coatings to render them more bioactive. Coatings with excellent adhesion to the substrate and able to form apatite when immersed in a simulated body fluid (SBF) can be fabricated by this methodology.
Date: December 1, 1998
Creator: Gomez-Vega, J. M.; Saiz, E.; Tomsia, A. P.; Marshall, G. W. & Marshall, S. J.
Partner: UNT Libraries Government Documents Department