51 Matching Results

Search Results

Advanced search parameters have been applied.

650 Apartments

Description: The view is of the apartment building in the distance with some parked cars. The facade is comprised of square shapes for windows and the laminate siding. Some yellow siding detail is also visible.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: 2004/2006
Creator: Ofis Arhitekti
Partner: UNT College of Visual Arts + Design

650 Apartments

Description: The view is of the facade of one of the four apartment modules. The facade is a rich reddish brown and bright yellow with many square windows and balconies.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: 2004/2006
Creator: Ofis Arhitekti
Partner: UNT College of Visual Arts + Design

Development of convective testing methods for low-rise multifamily buildings. Final report

Description: This report describes convective testing methods and protocols developed for use in weatherizing low-rise multifamily buildings. The methods can lead to controlling internal air movement and preventing leakage to the exterior by estimating magnitudes of air leakage pathways in garden and town house apartments. The 4 methods cited are: After-a-Retrofit; Equivalent Interfaces; Open-a-Door; and Add-a-Pathway. It is found that, because of modern interior finishing practices, convective problems tend to be more associated with indoor air quality than loss of space conditioning energy. The After-a-Retrofit method is the easiest to integrate into current diagnostic practices. In some cases, the Equivalent Interfaces method may be used on a production basis. The methods are an advance on current field practices that do not quantify the leakage pathways and research practices that require extensive equipment.
Date: August 1, 1996
Creator: Stiles, M.R.
Partner: UNT Libraries Government Documents Department

Ventilation and infiltration in high-rise apartment buildings

Description: Air flow, air leakage measurements and numerical simulations were made on a 13-story apartment building to characterize the ventilation rates for the individual apartments. Parametric simulations were performed for specific conditions, e.g., height, orientation, outside temperature and wind speed. Our analysis of the air flow simulations suggest that the ventilation to the individual units varies considerably. With the mechanical ventilation system disabled and no wind, units at the lower level of the building have adequate ventilation only on days with high temperature differences, while units on higher floors have no ventilation at all. Units facing the windward side will be over-ventilated when the building experiences wind directions between west and north. At the same time, leeward apartments did not experience any fresh air-because, in these cases, air flows enter the apartments from the corridor and exit through the exhaust shafts and the cracks in the facade. Even with the mechanical ventilation system operating, we found wide variation in the air flows to the individual apartments. In addition to the specific case presented here, these findings have more general implications for energy retrofits and health and comfort of occupants in high-rise apartment buildings.
Date: March 1, 1996
Creator: Diamond, R.C.; Feustel, H.E. & Dickerhoff, D.J.
Partner: UNT Libraries Government Documents Department

DOE-HUD initiative on energy efficiency in housing: A federal partnership

Description: A five-year initiative between the US Department of Energy (DOE) and the US Department of Housing and Urban Development (HUD) demonstrated the feasibility of improving the energy efficiency of publicly-assisted housing. Twenty-seven projects and activities undertaken during 1990--95 involved research and field demonstrations, institutional and administrative changes to HUD policies and procedures, innovative financing and leveraging of federal dollars with non-federal money, and education, training, and technical assistance. With most of the 27 projects and activities completed, the two departments have initiated a five-year deployment effort, the DOE-Energy Partnerships for Affordable Homes, to achieve energy and water savings in public and assisted housing on a large scale throughout the country. A Clearinghouse for Energy Efficiency in Public and Assisted Housing managed by the National Center for Appropriate Technology (NCAT), will offer hands-on energy assistance to housing providers to complement DOE`s assistance. This paper presents the findings of the DOE-HUD Initiative, with primary attention paid to those projects which successfully integrated energy efficiency into private and public single and multifamily housing. The paper includes examples of the publications, case-study reports, exhibits and videotapes developed during the course of the Initiative. Information on the new DOE Energy Partnerships and on the NCAT Clearinghouse is also presented. New Partnership projects with the Atlanta and Chicago Housing Authorities describe the technical assistance envisioned under the Partnership.
Date: July 1, 1996
Creator: Brinch, J.; Ternes, M. & Myers, M.
Partner: UNT Libraries Government Documents Department

Simplified multizone blower door techniques for multifamily buildings. Final report

Description: This research focused on the applicability of (a) two-blower-door and (b) single-blower-door multi-zone pressurization techniques for estimating the air leakage characteristics of New York State multi-family apartment buildings. The research also investigated the magnitude of external leakage area in multi-family buildings and used computer simulations to estimate the effect of decreasing external and internal leakage areas on air infiltration rates. This research investigates whether two blower doors can be used to determine the ELA of the exterior envelope and the ELA of partitions. Two multi-zone versions of the single-blower-door pressurization method are also examined.
Date: September 1, 1995
Partner: UNT Libraries Government Documents Department

Impact evaluation of the energy retrofits installed in the Margolis high-rise apartment building, Chelsea housing authority

Description: As part of a joint demonstration effort involving HUD, DOE, a local public housing authority and Boston Edison, an evaluation of energy and demand saving retrofits was conducted for a tall, residential, low-income building located in Boston. The thirteen story building underwent window, lighting, and heating system control renovations in December, 1992. The success of these retrofits was determined using monthly and hourly whole-building consumption data along with a calibrated DOE-2.1D energy simulation model. According to the model developed, post-retrofit conditions showed reductions in annual energy consumption of 325 MWh and in peak demand of 100 kW. These savings resulted in an annual energy cost savings of $28,000. Over 90% of energy and cost savings were attributed to the window retrofit. Interaction of the reduction in lighting capacity with the building`s electric resistance heating system reduced the potential for energy and demand savings associated with the lighting retrofit. Results from the hourly simulation model also indicate that night setbacks controlled by the energy management system were not implemented. An additional 32 MWh in energy savings could be obtained by bringing this system on-line, however peak demand would be increased by 40 kW as the morning demand for space heat is increased, with a net loss in cost savings of $2,500.
Date: March 1, 1995
Creator: Abraham, M.M.; McLain, H.A. & MacDonald, J.M.
Partner: UNT Libraries Government Documents Department

Heat exchanger sizing for vertical closed-loop ground-source heat pumps

Description: A building energy simulation program has been used in conjunction with a ground heat exchanger sizing algorithm to develop general guidelines on how to size vertical ground heat exchangers for closed-loop ground-source heat pump systems in large buildings. The analysis considered three commercial building types of varying size with different internal loads and heat pump efficiencies. Each building variation was simulated in seven cities, three in the US and four in Canada. The ground heat exchanger sizing algorithm has been previously validated against actual system data. The analysis results showed a strong correlation between heat exchanger length required and annual energy rejected to the ground, if the building was cooling-dominated, or annual energy extracted from the ground, if the building was heating-dominated. The resulting sizing guidelines recommend hour-by-hour energy analysis to determine the energy extracted from and rejected to the building water loop. Using this information the designer will have available easy-to-use, accurate sizing guidelines that should result in more economical installations than those based on previous ``rule of thumb`` guidelines.
Date: December 31, 1995
Creator: Cane, R.L.D.; Clemes, S.B.; Morrison, A. & Hughes, P.J.
Partner: UNT Libraries Government Documents Department

The multifamily building evaluation project

Description: In 1991 the New York State Energy Office embarked on a comprehensive multi-year study of multifamily housing in New York City. The principal objective of the evaluation was to determine the degree to which new windows and boiler/burner retrofits installed in 22 multifamily buildings located in the New York City region save energy and whether the savings persist over a minimum of two years. Window and boiler retrofits were selected because they are popular measures and are frequently implemented with assistance from government and utility energy programs. Approaches prospectively, energy consumption monitoring and a series of on-site inspections helped explain why energy savings exceeded or fell short of expectations. In 1993, the scope of the evaluation expanded to include the monitoring of domestic hot water (DHW) consumption in order to better understand the sizing of combined heating/DHW boilers and water consumption patterns. The evaluation was one of ten proposals selected from over 100 candidates in a nationwide competition for a US Department of Energy Building Efficiency Program Grant. The Energy Office managed the project, analyzed the data and prepared the reports, Lawrence Berkeley Laboratory served as technical advisor, and EME Group (New York City) installed meters and dataloggers, collected data, and inspected the retrofits. The New York State Energy Research and Development Authority collaborated with the Energy Office on the DHW monitoring component. Results did not always follow predictable patterns. Some buildings far exceeded energy saving estimates while others experienced an increase in consumption. Persistence patterns were mixed. Some buildings showed a steady decline in energy savings while others demonstrated a continual improvement. A clear advantage of the research design was a frequent ability to explain results.
Date: March 1, 1995
Partner: UNT Libraries Government Documents Department

The New York Power Authority`s energy-efficient refrigerator program for the New York City Housing Authority -- 1997 savings evaluation

Description: This document describes the estimation of the annual energy savings achieved from the replacement of 20,000 refrigerators in New York City Housing Authority (NYCHA) public housing with new, highly energy-efficient models in 1997. The US Department of Housing and Urban Development (HUD) pays NYCHA`s electricity bills, and agreed to reimburse NYCHA for the cost of the refrigerator installations. Energy savings over the lifetime of the refrigerators accrue to HUD. Savings were demonstrated by a metering project and are the subject of the analysis reported here. The New York Power Authority (NYPA) identified the refrigerator with the lowest life-cycle cost, including energy consumption over its expected lifetime, through a request for proposals (RFP) issued to manufacturers for a bulk purchase of 20,000 units in 1997. The procurement was won by Maytag with a 15-ft{sup 3} top-freezer automatic-defrost refrigerator rated at 437 kilowatt-hours/year (kWh/yr). NYCHA then contracted with NYPA to purchase, finance, and install the new refrigerators, and demanufacture and recycle materials from the replaced units. The US Department of Energy (DOE) helped develop and plan the project through the ENERGY STAR{reg_sign} Partnerships program conducted by its Pacific Northwest National Laboratory (PNNL). PNNL designed the metering protocol and occupant survey used in 1997, supplied and calibrated the metering equipment, and managed and analyzed the data collected by NYPA. The objective of the 1997 metering study was to achieve a general understanding of savings as a function of refrigerator label ratings, occupant effects, indoor and compartment temperatures, and characteristics (such as size, defrost features, and vintage). The data collected in 1997 was used to construct models of refrigerator energy consumption as a function of key refrigerator and occupant characteristics.
Date: September 1, 1998
Creator: Pratt, R.G. & Miller, J.D.
Partner: UNT Libraries Government Documents Department

Effectiveness of duct sealing and duct insulation in multi-family buildings. Final report

Description: This research investigated the cost-effectiveness of sealing and insulating the accessible portions of duct systems exposed to unconditioned areas in multifamily housing. Airflow and temperature measurements were performed in 25 apartments served by 10 systems a 9 multi-family properties. The measurements were performed before and after each retrofit, and included apartment airflow (supply and return), duct system temperatures, system fan flow and duct leakage area. The costs for each retrofit were recorded. The data were analyzed and used to develop a prototypical multifamily house. This prototype was used in energy simulations (DOE-2.1E) and air infiltration simulations (COMIS 2.1). The simulations were performed for two climates: New York City and Albany. In each climate, one simulation was performed assuming the basement was tight, and another assuming the basement was leaky. Simulation results and average retrofit costs were used to calculate cost-effectiveness. The results of the analysis indicate that sealing leaks of the accessible ductwork is cost-effective under all conditions simulated (simple payback was between 3 and 4 years). Insulating the accessible ductwork, however, is only cost-effective for buildings with leaky basement, in both climates (simple paybacks were less than 5 years). The simple payback period for insulating the ducts in buildings with tight basements was greater than 10 years, the threshold of cost-effectiveness for this research. 13 refs., 5 figs., 27 tabs.
Date: July 1, 1997
Creator: Karins, N.H.; Tuluca, A. & Modera, M.
Partner: UNT Libraries Government Documents Department

Energy effectiveness of duct sealing and insulation in two multifamily buildings

Description: Energy losses from forced air distribution systems have a significant impact on the energy efficiency of buildings. Little work has been done to quantify these losses in apartment buildings. In this paper the authors will discuss field measurements made on four forced air heating systems to evaluate the duct system energy losses to unconditioned basements. The apartments were heated by natural gas furnaces located in the basements. The systems had bare sheet metal ductwork exposed to the basement conditions. The pre-retrofit measurements were made on the systems after sealing large easily visible leaks. The post-retrofit measurements were made after wrapping the ducts in foil backed glass fiber insulation and additional leak sealing. Only the sections of duct exposed to the basement were retrofitted because only these sections were accessible. This study examines the potential energy savings for this type of limited retrofit. The energy losses were separated into leakage and conduction terms. Leakage measurements were made using register flowhood techniques. Conduction losses were estimated by measuring temperatures in the plenums and at the registers. Analysis of the measurements has shown typical reduction in leakage flow due to duct sealing of about 40%. The reduction in leakage translated into a reduction in energy consumption of about 10%.
Date: August 1996
Creator: Walker, I. S.; Modera, M. P.; Tuluca, A. & Graham, I.
Partner: UNT Libraries Government Documents Department

Innovative Composite Wall System for Sheathing Masonry Walls

Description: Existing Housing - Much of the older multifamily housing stock in the United States includes units in structures with uninsulated masonry walls. Included in this stock are two- and three-story walk-up apartments, larger apartment complexes, and public housing (both high- rise and townhouse). This older multifamily housing has seen years of heavy use that may have left the plaster wall marred or damaged. Long- term building settlement or movement may have cracked the plaster, sometimes severely. Moisture from invented kitchens and baths may have caused condensation on uninsulated exterior walls. At best this condensation has left stains on the paint or wallpaper. At worst it has supported mold and mildew growth, fouling the air and creating unhealthy living conditions. Deteriorating plaster and flaking paint also result from wet walls. The presence of flaking, lead-based paint in older (pre-1978) housing is a major public health concern. Children can suffer permanent mental handicaps and psychological disorders if they are subjected to elevated levels of lead, while adults can suffer hypertension and other maladies. Studies have found that, in some urban communities with older housing stocks, over 35% of children tested have elevated blood lead levels (Hastings, et al.: 1997). Nationally, nearly 22% of black, non-hispanic children living in pre-1946 housing were found to have elevated levels of lead in their blood (MWWR Article: February 21,1997). The deterioration of many of these walls is to the point that lead can freely enter the living space.
Date: September 25, 1997
Creator: Wendt, Robert L. & Cavallo, James
Partner: UNT Libraries Government Documents Department

Thermostatic Radiator Valve (TRV) Demonstration Project. Final report

Description: This research measured the energy savings associated with installing thermostatic radiator valves (TRVs) on one-pipe low-pressure steam systems in New York City multifamily buildings. There were three primary objectives: to determine whether fuel consumption was lower in buildings using TRVs; to determine if occupants would accept the TRVs; and to determine if overheating in apartments could be eliminated using TRVs. Eight buildings, ranging in size from 15 to 26 apartments, were monitored for three years. Each building was audited to determine fuel history and quick-payback energy conservation measures. The project covered three phases; phase-1 consisted of installing low-cost energy conservation measures such as pipe insulation, air vents and burner tune-tips; determining each building`s baseline energy use, and recording baseline apartment temperatures. TRV installations occurred in phases 2 and 3. In phase-2, TRVs were installed in half the apartments in four buildings. In phase-3, TRVs were installed in the remainder of the apartments. Experimental results were conclusive. Buildings with overheated apartments achieved energy savings through the installation of TRVs. The authors research shows an average reduction of 9.45% in space heating energy use occurred with partial installation of TRVs, and savings of 15.5% were achieved after full installation. Buildings with the highest average apartment temperatures during the base year showed the greatest energy savings. Simple payback, based on an installed price of $50 per TRV, averaged 3.1 years.
Date: September 1, 1995
Partner: UNT Libraries Government Documents Department

2003 Climate Change Fuel Cell Buy-Down Program

Description: The Student Apartments Fuel Cell Island Project consists of three (3) 200 kW phosphoric acid fuel cells located in conjunction with three (3) student apartment buildings, each housing 200 students. The Final Report contains limited data because the fuel cells were started up November 2005 and shutdown March 2006. The price of natural gas, which is the primary fuel for the fuel cells, escalated by 200% following hurricane Katrina in August 2005. This escalation in natural gas price made operation of the fuel cells economically unviable, i.e., the cost to produce electricity with the fuel cells far exceeded the cost to purchase electricity from the utility. The College intends to restart the fuel cells once the cost of natural gas stabilizes. The natural gas futures market is currently overpriced even though fundamentally the physical inventory is a five year high. We believe the natural gas market will eventually correct to the fundamentals and drive the cost down. Once this occurs we will restart the fuel cells.
Date: December 31, 2006
Creator: Winyard, Lori K.
Partner: UNT Libraries Government Documents Department

Trade Study on Aggregation of Multiple 10-KW Solid Ozide Fuel Cell Power Modules

Description: According to the Solid State Energy Conversion Alliance (SECA) program guidelines, solid oxide fuel cells (SOFC) will be produced in the form of 3-10 kW modules for residential use. In addition to residential use, these modules can also be used in apartment buildings, hospitals, etc., where a higher power rating would be required. For example, a hospital might require a 250 kW power generating capacity. To provide this power using the SECA SOFC modules, 25 of the 10 kW modules would be required. These modules can be aggregated in different architectures to yield the necessary power. This report will show different approaches for aggregating numerous SOFC modules and will evaluate and compare each one with respect to cost, control complexity, ease of modularity, and fault tolerance.
Date: December 3, 2004
Creator: Ozpineci, B.
Partner: UNT Libraries Government Documents Department

[News Script: Dallas fires]

Description: Script from the WBAP-TV/NBC station in Fort Worth, Texas, covering a news story about two early-morning fires in Dallas, one the Negro Baptist Church at 2525 Caddo, believed to be arson covering a burglary, the second a 12-unit apartment building at 4501 Sycamore.
Date: March 23, 1964
Creator: WBAP-TV (Television station : Fort Worth, Tex.)
Partner: UNT Libraries Special Collections

Facilitating submetering implementation. Final report

Description: Residential submetering is the measurement and billing of electric use in individual apartments in master-metered buildings. In master-metered building situations, residents do not bear electricity costs in proportion to consumption levels. As a result, studies have confirmed that residents in master-metered buildings tend to consume more electricity than residents with individual apartment metering, and have established electrical submetering as an effective energy conservation measure. The New York State Energy Research & Development Authority (NYSERDA) has commissioned a project called Facilitating Submetering Implementation to identify and analyze barriers to the implementation of residential electrical submetering in New York and to formulate recommendations that would facilitate the removal of these barriers, streamlining the process. Experienced professionals in the technical, legal, regulatory, analytical, financial, and other aspects of submetering were retained to interview key interested parties and conduct public forums. This and other data were then analyzed to ascertain the barriers to submetering and develop recommendations designed to reduce or eliminate these barriers. The key barriers to submetering implementation were found to be the Public Service Commission (PSC) requirement for a vote of a majority of shareholders (for coops and condos) and the high initial cost that cannot easily be recouped by owners of both rental and shareholder-owned buildings. The key recommendations are to repeal the voting requirement, maintain the utility incentives, adopt a uniform dispute resolution mechanism, and increase awareness through an Ad-hoc Submetering Committee and supporting educational materials. Other funding sources not fully available can also be made available with regulatory agency support.
Date: May 1, 1996
Creator: Bowers, M.A.
Partner: UNT Libraries Government Documents Department

Rebuild America Partner Update, January--February 1999

Description: Rebuild America Partner Update, the bimonthly newsletter about the Rebuild America community, covers partnership activities, industry trends, and program news. Rebuild America is a network of community partnerships--made up of local governments and businesses--that save money by saving energy. These voluntary partnerships, working with the US Department of Energy, choose the best ways to improve the energy efficiency of commercial, government and apartment buildings. Rebuild America supports them with business and technical tools and customized assistance. By the year 2003, 250 Rebuild America partnerships will be involved in over 2 billion square feet of building renovations, which will save $650 million every year in energy costs, generate $3 billion in private community investment, create 26,000 new private sector jobs, and reduce air pollution by 1.6 million tons of carbon dioxide a year.
Date: January 1, 1999
Partner: UNT Libraries Government Documents Department

Residential energy use in Lithuania: The prospects for energy efficiency

Description: While the potential for saving energy in Lithuania`s residential sector (especially, space heating in apartment buildings) is large, significant barriers (financial, administration, etc.) to energy efficiency remain. Removing or ameliorating these barriers will be difficult since these are systematic barriers that require societal change. Furthermore, solutions to these problems will require the cooperation and, in some cases, active participation of households and homeowner associations. Therefore, prior to proposing and implementing energy-efficiency solutions, one must understand the energy situation from a household perspective.
Date: June 1, 1998
Creator: Vine, E. & Kazakevicius, E.
Partner: UNT Libraries Government Documents Department

Simulating a Nationally Representative Housing Sample Using EnergyPlus

Description: This report presents a new simulation tool under development at Lawrence Berkeley National Laboratory (LBNL). This tool uses EnergyPlus to simulate each single-family home in the Residential Energy Consumption Survey (RECS), and generates a calibrated, nationally representative set of simulated homes whose energy use is statistically indistinguishable from the energy use of the single-family homes in the RECS sample. This research builds upon earlier work by Ritchard et al. for the Gas Research Institute and Huang et al. for LBNL. A representative national sample allows us to evaluate the variance in energy use between individual homes, regions, or other subsamples; using this tool, we can also evaluate how that variance affects the impacts of potential policies. The RECS contains information regarding the construction and location of each sampled home, as well as its appliances and other energy-using equipment. We combined this data with the home simulation prototypes developed by Huang et al. to simulate homes that match the RECS sample wherever possible. Where data was not available, we used distributions, calibrated using the RECS energy use data. Each home was assigned a best-fit location for the purposes of weather and some construction characteristics. RECS provides some detail on the type and age of heating, ventilation, and air-conditioning (HVAC) equipment in each home; we developed EnergyPlus models capable of reproducing the variety of technologies and efficiencies represented in the national sample. This includes electric, gas, and oil furnaces, central and window air conditioners, central heat pumps, and baseboard heaters. We also developed a model of duct system performance, based on in-home measurements, and integrated this with fan performance to capture the energy use of single- and variable-speed furnace fans, as well as the interaction of duct and fan performance with the efficiency of heating and cooling equipment. Comparison with RECS revealed ...
Date: March 4, 2011
Creator: Hopkins, Asa S.; Lekov, Alex; Lutz, James; Rosenquist, Gregory & Gu, Lixing
Partner: UNT Libraries Government Documents Department

Leveraging Limited Scope for Maximum Benefit in Occupied Renovation of Uninsulated Cold Climate Multifamily Housing

Description: This project examines a large-scale renovation project within a 500 unit, 1960's era subsidized urban housing community. This research focuses on the airflow control and window replacement measures implemented as part of the renovations to the low-rise apartment buildings. The window replacement reduced the nominal conductive loss of the apartment enclosure by approximately 15%; air sealing measures reduced measured air leakage by approximately 40% on average.
Date: March 1, 2012
Creator: Neuhauser, K.; Bergey, D. & Osser, R.
Partner: UNT Libraries Government Documents Department