193 Matching Results

Search Results

Advanced search parameters have been applied.

Cayuga County Regional Digester - Vision Becomes Reality - Final Report

Description: With an average herd size of 113 mature cows, Cayuga County is home to 280 dairy farms and 31,500 dairy milking cows producing approximately 855 million gallons of milk per year. The Cayuga Dairy industry is a major contributor to the countys economy, employing nearly 1200 people, while generating $140,000,000 of revenue from sale of milk alone. At the same time, the Cayuga County dairy industry also produces 5.7 million gallons of manure daily: a) Nearly 34% of this manure is produced on smaller farms. b) Digesters are expensive pieces of equipment and require attention and care. c) The on-farm digester systems have fairly long payback (>10 years) even for larger CAFO farms (>1000 milking cows). In 2005, Cayuga County Soil and Water Conservation District (The District), a Public Agency under Cayuga County, decided to undertake a centralized community digester project. The primary goal of the project was to develop an economically sustainable model, under the auspices of The District to address manure management issues facing the smaller dairies, improve the water quality and improve the quality of life for Cayuga County residents. It is believed that the District has accomplished this goal by completing construction of Cayuga County Regional Digester on a parcel of land behind the Cayuga County Natural Resource Center located at 7413 County House Road in the Town of Sennett in Cayuga County, New York. The digester facility consists of the following major components. 1. Transfer Station: This an indoor truck bay, where 35,000 gallons of manure from three local farms, 8,500 gallons of liquid organic food-processor waste, and 1,200 gallons of brown grease are unloaded from tanker trucks and the digested slurry is loaded onto the tanker trucks for delivery back to the participating farms. 2. Anaerobic Digester: The project utilizes a hydraulic mix anaerobic ...
Date: March 12, 2013
Creator: Zadeh, Kamyar V.
Partner: UNT Libraries Government Documents Department

Intermediate-Scale High-Solids Anaerobic Digestion System Operational Development

Description: Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. During the first 1.5 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements, which may be critical in further scale-up efforts using ,the NREL high-solids digester design are detailed in this report.
Date: February 1, 1995
Creator: Rivard, C. J.
Partner: UNT Libraries Government Documents Department

Dairy Analytics and Nutrient Analysis (DANA) Prototype System User Manual

Description: This document is a user manual for the Dairy Analytics and Nutrient Analysis (DANA) model. DANA provides an analysis of dairy anaerobic digestion technology and allows users to calculate biogas production, co-product valuation, capital costs, expenses, revenue and financial metrics, for user customizable scenarios, dairy and digester types. The model provides results for three anaerobic digester types; Covered Lagoons, Modified Plug Flow, and Complete Mix, and three main energy production technologies; electricity generation, renewable natural gas generation, and compressed natural gas generation. Additional options include different dairy types, bedding types, backend treatment type as well as numerous production, and economic parameters. DANA’s goal is to extend the National Market Value of Anaerobic Digester Products analysis (informa economics, 2012; Innovation Center, 2011) to include a greater and more flexible set of regional digester scenarios and to provide a modular framework for creation of a tool to support farmer and investor needs. Users can set up scenarios from combinations of existing parameters or add new parameters, run the model and view a variety of reports, charts and tables that are automatically produced and delivered over the web interface. DANA is based in the INL’s analysis architecture entitled Generalized Environment for Modeling Systems (GEMS) , which offers extensive collaboration, analysis, and integration opportunities and greatly speeds the ability construct highly scalable web delivered user-oriented decision tools. DANA’s approach uses server-based data processing and web-based user interfaces, rather a client-based spreadsheet approach. This offers a number of benefits over the client-based approach. Server processing and storage can scale up to handle a very large number of scenarios, so that analysis of county, even field level, across the whole U.S., can be performed. Server based databases allow dairy and digester parameters be held and managed in a single managed data repository, while allows users to ...
Date: October 1, 2012
Creator: Alessi, Sam & Keiser, Dennis
Partner: UNT Libraries Government Documents Department

Deploying anaerobic digesters: Current status and future possibilities

Description: Unmanaged pollutants from putrescible farm, industrial, and municipal wastes degrade in the environment, and methane emitted from their decomposition may contribute to global climate change. Under modern environmental regulations, these wastes are becoming difficult to dispose of using traditional means. One waste management system, anaerobic digestion or AD, not only provides pollution prevention but can also convert a disposal problem into a new profit center. This report is drawn from a special session of the Second Biomass Conference of the Americas. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
Date: January 1, 1996
Creator: Lusk, P.; Wheeler, P. & Rivard, C.
Partner: UNT Libraries Government Documents Department

Methane Recovery from Animal Manures The Current Opportunities Casebook

Description: Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only provides pollution prevention but also can convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion (AD) of livestock manures is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel for livestock production operations. This Casebook examines some of the current opportunities for the recovery of methane from the AD animal manures. U.S. livestock operations currently employ four types of anaerobic digester technology: slurry, plug-flow, complete-mix, and covered lagoon. An introduction to the engineering economies of these technologies is provided, and possible end-use applications for the methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Case studies of operating digesters, with project and maintenance histories and the operators ''lessons learned,'' are included as reality checks. Factors necessary for successful projects, as well as a list of reasons explaining why some AD projects fail, are provided. The role of farm management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at farms willing to incorporate the uncertainties of a new technology. More than two decades of research has provided much information about how manure can be converted to an energy source; however, the American farmer has not been motivated to adopt new practices. More cost-effective and easily managed manure management techniques are ...
Date: September 1, 1998
Creator: Lusk, P.
Partner: UNT Libraries Government Documents Department

Final Technical Report

Description: The state of New York through the New York State Energy Research and Development Authority (NYSERDA) has developed a suite of digester projects throughout the state to assess the potential for anaerobic digestion systems to improve manure management and concurrently produce energy through the production of heat and electrical power using the biogas produced from the digesters. Dairies comprise a significant part of the agribusiness and economy of the state of New York. Improving the energy efficiency and environmental footprint of dairies is a goal of NYSERDA. SUNY Morrisville State College (MSC) is part of a collection of state universities, dairy farms, cooperatives, and municipalities examining anaerobic digestion systems to achieve the goals of NYSERDA, the improvement of manure management, and reducing emissions to local dairy animal sites. The process for siting a digester system at the MSC’s free-stall Dairy Complex was initiated in 2002. The project involved the construction of an anaerobic digester that can accommodate the organic waste generated at Dairy complex located about a mile southeast of the main campus. Support for the project was provided through funding from the New York State Energy Research and Development Authority (NYSERDA) and the New York State Department of Agriculture and Markets. The DOE contribution to the project provided additional resources to construct an expanded facility to handle waste generated from the existing free-stall dairy and the newly-constructed barns. Construction on the project was completed in 2006 and the production of biogas started soon after the tanks were filled with the effluent generated at the Dairy Complex. The system has been in operation since December 17, 2006. The generated biogas was consistently flared starting from December 20, 2006, and until the operation of the internal combustion engine/generator set were first tested on the 9th of January, 2007. Flaring the biogas ...
Date: March 20, 2007
Creator: Shayya, Walid
Partner: UNT Libraries Government Documents Department

Methane recovery from animal manures: A current opportunities casebook

Description: This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures US livestock operations currently employ four types of anaerobic digester technology: Slurry, plug flow, complete mix, and covered lagoon. An introduction to the engineering economies of these technologies is provided, and possible end-use applications for the methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations.
Date: August 1, 1995
Partner: UNT Libraries Government Documents Department

Recycling and Energy Recovery Pilot Project: Project Report and Future Efforts

Description: A novel bioprocessing technology was developed that efficiently converts negative-value organic waste, including domestic refuse, animal manures, industrial wastes, food processing wastes, and municipal sewage sludge into saleable products, including fuel gas and compost. This technology is known as high solids anaerobic digestion and was developed at NREL from fundamental research to laboratory- and intermediate-scale system evaluations.
Date: May 19, 1999
Creator: Rivard, C.
Partner: UNT Libraries Government Documents Department

Organic carbon cycling in landfills: Model for a continuum approach

Description: Organic carbon cycling in landfills can be addressed through a continuum model where the end-points are conventional anaerobic digestion of organic waste (short-term analogue) and geologic burial of organic material (long-term analogue). Major variables influencing status include moisture state, temperature, organic carbon loading, nutrient status, and isolation from the surrounding environment. Bioreactor landfills which are engineered for rapid decomposition approach (but cannot fully attain) the anaerobic digester end-point and incur higher unit costs because of their high degree of environmental isolation and control. At the other extreme, uncontrolled land disposal of organic waste materials is similar to geologic burial where organic carbon may be aerobically recycled to atmospheric CO{sub 2}, anaerobically converted to CH{sub 4} and CO{sub 2} during early diagenesis, or maintained as intermediate or recalcitrant forms into geologic time (> 1,000 years) for transformations via kerogen pathways. A family of improved landfill models are needed at several scales (molecular to landscape) which realistically address landfill processes and can be validated with field data.
Date: September 1, 1997
Creator: Bogner, J. & Lagerkvist, A.
Partner: UNT Libraries Government Documents Department

Bioremediation of PCBs. CRADA final report

Description: The Cooperative Research and Development Agreement was signed between Oak Ridge National Laboratory (ORNL) and General Electric Company (GE) on August 12, 1991. The objective was a collaborative venture between researchers at GE and ORNL to develop bioremediation of polychlorinated biphenyls (PCBs). The work was conducted over three years, and this report summarizes ORNL`s effort. It was found that the total concentration of PCBs decreased by 70% for sequential anaerobic-aerobic treatment compared with a 67% decrease for aerobic treatment alone. The sequential treatment resulted in PCB products with fewer chlorines and shorter halflives in humans compared with either anaerobic or aerobic treatment alone. The study was expected to lead to a technology applicable to a field experiment that would be performed on a DOE contaminated site.
Date: June 1, 1996
Creator: Klasson, K. T. & Abramowicz, D. A.
Partner: UNT Libraries Government Documents Department

Anaerobic digestion of livestock manures: A current opportunities casebook

Description: Growth and concentration of the livestock industry creates new opportunities for proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. One manure management system provides not only pollution prevention but also converts a problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products, including a renewable fuel. An introduction to the engineering economies of these technologies is provided, based on estimates of digesters that generate electricity from the recovered methane. Regression models used to estimate digester cost and internal rate of return are developed from the evaluations. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned{close_quotes}, are provided as a reality check.
Date: August 1, 1995
Creator: Lusk, P.D.
Partner: UNT Libraries Government Documents Department

Energy and biomass recovery from wastewater. Final report, December 1989--December 1990

Description: The goal of the project was to demonstrate in a large pilot study that domestic sewage could be converted to useful products, mainly substitute natural gas and clean water, using two low-cost biological processes -- a high-rate anaerobic treatment unit followed by a hydroponic plant treatment system. The anaerobic attached film expanded bed (AAFEB) and the Nutrient Film Technique (NFT) are two innovative technologies developed over more than a decade at Cornell University. Documentation of this biological system for 52 months at flows up to 40 s/d (greater than 10,000 gal/d) showed the system to be highly successful. This report covers the last 12 months of this jointly sponsored NYSERDA/GRI study. Efforts were made to document the empirical relationships between system loading rate and effluent quality. Although the sewage temperatures varied from 7{degrees}C to 28{degrees}C and little modification of reactor temperatures were made, low temperatures had minimal effects on the purification capabilities. Effluent quality was excellent (BOD and SS less than 5 mg/1) with plant nutrients removed to less than 1 mg/l for total nitrogen and total phosphorus at low hydraulic loadings (less than 3 cm/d). Sludge generation was less than at conventional primary plants and much less than at conventional secondary facilities. The economics of the hypothesized system appear promising.
Date: June 1, 1995
Creator: Jewell, W.J.; Cummings, R.J.; Nock, T.D.; Hicks, E.E. & White, T.E.
Partner: UNT Libraries Government Documents Department

Microbial ecology of thermophilic anaerobic digestion. Final report

Description: This grant supported research on methanogenic archaea. The two major areas that were supported were conversion of acetic acid to methane and nitrogen fixation by Methanosarcina. Among the achievements of this research were the isolation of novel methanogenic cultures, elucidation of the pathways from acetate to methane, description of a specific DNA-binding complex in nitrogen fixing methanogens, and demonstration of an alternative nitrogenase in Methanosarcina.
Date: April 15, 2000
Creator: Zinder, Stephen H.
Partner: UNT Libraries Government Documents Department

Biogas Potential in the United States (Fact Sheet)

Description: Biogas has received increased attention as an alternative energy source in the United States. The factsheet provides information about the biogas (methane) potential from various sources in the country (by county and state) and estimates the power generation and transportation fuels production (renewable natural gas) potential from these biogas sources. It provides valuable information to the industry, academia and policy makers in support of their future decisions.
Date: October 1, 2013
Partner: UNT Libraries Government Documents Department

Anaerobic and aerobic transformation of TNT

Description: Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.
Date: December 31, 1996
Creator: Kulpa, C.F.; Boopathy, R. & Manning, J.
Partner: UNT Libraries Government Documents Department

Energetics and kinetics of anaerobic aromatic and fatty acid degradation. Progress report, November 1993--November 1994

Description: Factors influencing the rate and extent of benzoate degradation by the anaerobic syntrophic consortia were studied. Nonlinear regression analysis showed that the cause of the benzoate threshold was not a diminished benzoate degradation capacity. Analysis of cocultures with hydrogen users that differed in their hydrogen utilization capacities showed that the threshold did not depend on the kinetic properties of the syntrophic partner. These data support a thermodynamic explanation for the threshold, and exclude the possibility that a change in the affinity of the enzyme system due to acetate inhibition caused the threshold. Modeling studies showed that the threshold value could be predicted from the concentrations of the end products, assuming a critical Gibb`s free energy value. This work shows that interspecies acetate transfer is important in controlling the extent of metabolism by syntrophic organisms.
Date: December 6, 1994
Creator: McInerney, M.J.
Partner: UNT Libraries Government Documents Department

ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

Description: During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the reactor. Batch ...
Date: July 31, 2001
Creator: Gallagher, John R.
Partner: UNT Libraries Government Documents Department

Final Report: Feasibility Study of Biomass in Snohomish County, Washington

Description: This report and its attachments summarizes the results of a unique tribal-farmer cooperative study to evaluate the feasibility of building one or more regional anaerobic digestion systems in Snohomish County, Washington.
Date: January 31, 2005
Creator: Tribes), Daryl Williams (Tulalip & Group), Ray Clark (Clark
Partner: UNT Libraries Government Documents Department

The effect of biotin on the production of succinic acid by Anaerobiospirillum succiniciproducens

Description: Succinic acid is an intermediate of the tricarboxylic acid (TCA) cycle, and therefore, is found in almost all plant and animal cells, albeit at very low concentrations. It has a very wide usage range, which includes applications in agriculture, food, medicine, plastics, cosmetics, textiles, plating and waste-gas scrubbing. Succinic acid currently is produced commercially by chemical processes. A fermentation process for its production is of great interest because in such process, renewable resources such as corn-derived glucose can be used as starting material. There is not a current biological process for the commercial production of succinic acid. Extensive efforts have been devoted to the isolation and screening of succinic acid-producing microorganisms. The anaerobic bacterium, Anaerobiospirillum succiniciproducens, is considered among the best direct succinic acid producers. A number of patents concerning the production of succinic acid by this organism have been issued. Our first attempt to develop a biological process for the production of succinic acid by A. succiniciproducens involved fermentation media improvement, in particular the use of supplemented nutrients. In this note, we show that higher yield of succinic acid could be achieved by supplementing the fermentation media with biotin, as a potential nutrient supplement representative.
Date: July 1, 1995
Creator: Nghiem, N.P.; Davison, B.H. & Thompson, J.E.
Partner: UNT Libraries Government Documents Department

Intermediate-scale high-solids anaerobic digestion system operational development

Description: Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. Operation of the anaerobic digestion process at high solids reduces the level of process water and thereby the size and capital costs for the digester system. In addition, by virtue of the lack of available water, the microbial catalysts are more productive in feedstock polymer hydrolysis. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. Information gained from laboratory-scale digester research was used to develop die intermediate-scale digester system. This system represents a 50-fold scale-up of the original digester system and includes continuous feed addition and computer monitoring and control. During the first 1.15 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements -- which may be critical in further scale-up efforts using the NREL high-solids digester design -- are detailed in this report.
Date: February 1, 1995
Creator: Rivard, C.J.
Partner: UNT Libraries Government Documents Department

GTI

Description: Manure management is an ever-increasing environmental impact problem within the U.S. livestock industry due to the trends in growing scale of operation of individual animal raising facilities. Anaerobic digestion, the fermentation of organic matter into a mixture of methane and carbon dioxide called biogas, offers the livestock industry a viable solution to this problem. When anaerobic digestion is combined with by-product recovery and biogas utilization, the integrated system can potentially solve manure handling issues while creating significant energy, environmental and economic opportunities. The overall objective of this project was to conduct a laboratory proof-of-concept evaluation to determine the potential energy generation and pathogen control benefits of applying anaerobic digestion for the management of swine manure.
Date: July 1, 2003
Creator: GTI
Partner: UNT Libraries Government Documents Department

X-ray spectroscopic studies of microbial transformations of uranium

Description: Several uranium compounds U-metal ({alpha}-phase), UO{sub 2}, U{sub 3}O{sub 8}, {gamma}-UO{sub 3}, uranyl acetate, uranyl nitrate, uranyl sulfate, aqueous and solid forms of 1:1 U:citric acid and 1:1:2 U:Fe:citric acid mixed-metal complexes, and a precipitate obtained by photodegradation of the U-citrate complex were characterized by X-ray spectroscopy using XPS, XANES, and EXAFS. XPS and XANES were used to determine U oxidation states. Spectral shifts were obtained at the U 4f{sub 7/2} and U 4f{sub 5/2} binding energies using XPS, and at the uranium M{sub V} absorption edge using XANES. The magnitude of the energy shift with oxidation state, and the ability to detect mixed-valent forms make these ideal techniques for determining uranium speciation in wastes subjected to bacterial action. The structure of 1:1 U:citric acid complex in both the aqueous and solid state was determined by EXAFS analysis of hexavalent uranium at the L{sub M} absorption edge and suggests the presence of a binuclear complex with a (UO{sub 2}){sub 2}({mu},{eta}{sup 2} {minus}citrato){sub 2} core with a U-U distance of 5.2 {angstrom}. The influence of Fe on the structure of U-citrate complex was determined by EXAFS and the presence of a binuclear mixed-metal citrate complex with a U-Fe distance of 4.8 {angstrom} was confirmed. The precipitate resulting from photodegradation of U-citrate complex was identified as an amorphous form of uranium trioxide by XPS and EXAS.
Date: October 1, 1995
Creator: Dodge, C.J.; Francis, A.J. & Clayton, C.R.
Partner: UNT Libraries Government Documents Department

Anaerobic bioprocessing of low-rank coals. Progress report, April 1--June 30, 1992

Description: We are seeking to find biological methods to remove carboxylic functionalities from low-rank coals and to assess the properties of the modified coal towards coal liquefaction. The main objectives for this quarter were : continuation of microbial consortia development and maintenance, evaluation of commercial decarboxylase, decarboxylation of lignite, demineralized Wyodak coal and model polymer, and characterization of biotreated coals. Specifically we report that two batch fermentor systems were completed and three other fermentors under optimum conditions for coal decarboxylation are in progress; that inhibition of growth of methanogens in the batch fermentor system enhanced the carbon dioxide production; that adapted microbial consortium produced more gas from lignite than Wyodak subbituminous coal; that phenylalanine decarboxylase exhibited insignificant coal decarboxylation activity; that two different microbial consortia developed on coal seem to be effective in decarboxylation of a polymer containing free carboxylic groups; and that CHN analyses of additional biotreated coals reconfirm increase in H/C ratio by 3--6%.
Date: July 14, 1992
Creator: Jain, M. K.; Narayan, R. & Han, O.
Partner: UNT Libraries Government Documents Department

Biogas and Fuel Cells Workshop Summary Report: Proceedings from the Biogas and Fuel Cells Workshop, Golden, Colorado, June 11-13, 2012

Description: The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) held a Biogas and Fuel Cells Workshop June 11-13, 2012, in Golden, Colorado, to discuss biogas and waste-to-energy technologies for fuel cell applications. The overall objective was to identify opportunities for coupling renewable biomethane with highly efficient fuel cells to produce electricity; heat; combined heat and power (CHP); or combined heat, hydrogen and power (CHHP) for stationary or motive applications. The workshop focused on biogas sourced from wastewater treatment plants (WWTPs), landfills, and industrial facilities that generate or process large amounts of organic waste, including large biofuel production facilities (biorefineries).
Date: January 1, 2013
Partner: UNT Libraries Government Documents Department