518 Matching Results

Search Results

Advanced search parameters have been applied.

Polycrystal Simulations of Texture Evolution during Deformation Processing

Description: Some recent research on the hot deformation of aluminum alloys has indicated that at elevated temperatures, slip occurs on {110}<110> systems in addition to the usual {111}<110> systems active at lower temperatures. The effect of these additional slip systems on the texture evolution of aluminum single and polycrystals is studied using finite element simulations. The crystals are deformed in plane strain compression, and the constitutive response is modeled using crystal plasticity to track the reorientation of the crystals. By discretizing each crystal with a large number of elements, the non-uniform deformations due to local inhomogeneities and interactions with neighboring crystals are modeled. The resulting textures and microstructures are examined with regard to effect of including the additional systems, initial orientation of the single crystals, and stability of the cube orientation.
Date: May 11, 1998
Creator: Radhakrishnan, B.; Sarma, G. & Zacharia, T.
Partner: UNT Libraries Government Documents Department

On the importance of target materials interfaces during low speed impact

Description: We are conducting a Cooperative Research and Development Project under the sponsorship of the U.S. Department of Energy to determine the applicability of aluminum particulate reinforced alloy laminates to aircraft structures and for containment of aircraft engine turbine blades and debris due to catastrophic engine failure. Within this framework, we are studying the terminal interaction of projectiles impacting targets at speeds of 150- to 500 m/s. Our presentation focuses on a special series of experiments and computational physics analyses of 6061-T6 aluminum alloy targets in single plate and laminate form impacted by steel cylindrical projectiles. Four cases are examined, projectile impact into (1) a single plate, (2) three contiguous plates (frictional interfaces), (3) three contiguous plates separated by Teflon layers (frictionless interfaces), and (4) a spaced array of three plates. We found that the ratio of projectile kinetic energies just at target perforation for the highest to lowest critical projectile speeds over the four targets is 1.75. Considering that target areal density is held constant across the four targets, this is a dramatic result. 2 refs., 7 figs.
Date: July 1996
Creator: Gogolewski, R. P.; Cunningham, B. J.; Riddle, R.; Lesuer, D. & Syn, C.
Partner: UNT Libraries Government Documents Department

ALCAR - A Model for Horizontal R&D Consortia

Description: The ALCAR<sup>TM</sup> Consortium was created to develop a low cost, non-heat treatable automotive body sheet alloy. This paper will discuss the management aspects of organizing and running a horizontal consortium for competing companies to cooperate in conducting pre-competitive research and development involving the US Department of Energy, National Laboratories, Universities and industrial consultants.
Date: March 1999
Creator: Barthold, G. B.; Das, S. K. & Hayden, H. W.
Partner: UNT Libraries Government Documents Department

Mechanical response and microcrack formation in a fine-grained duplex TiAl at different strain rates and temperatures

Description: Compressive behavior of this alloy was studied at strain rates of 0. 001 and 2000 sec{sup -1} and temperatures from -196 C to 1200 C. Temperature dependence of yield stress was found to depend on strain rate: At the quasi-static strain rate, 0.001 sec{sup -1}, the yield stress decreases with temperature with a plateau between 200 and 800 C. At the high strain rate, 2000 sec{sup -1}, the yield stress exhibits a positive temperature dependence above 600 C. Strain hardening rate decreases dramatically with temperature in the very low and high temperature regions with a plateau at intermediate temperatures for both strain rates. As the strain rate increases, the strain hardening rate plateaus extended to higher temperatures. The strain rate sensitivity increases slightly with temperature (but less than 0.1) for strain rates above 0.001 sec{sup -1}. However, at a strain rate of 0.001 sec{sup -1}, there is a dramatic increase in the strain rate sensitivity with temperature; above 1100 C, the rate sensitivity becomes much larger. Microcracks occurring in grain interiors and at grain boundaries were observed at all strain rates and temperatures. Formation and distribution of microcracks were found to vary depending on strain rate and deformation temperature.
Date: October 1996
Creator: Jin, Z.; Cady, C.; Gray, G. T., III & Kim, Y.-W.
Partner: UNT Libraries Government Documents Department

Light weight cellular structures based on aluminium

Description: An interesting form of lightweight material which has emerged in the past 2 decades is metallic foam. This paper deals with the basic concepts of making metallic foams and a detailed study of foams produced from Al-SiC. In addition, some aspects of cellular solids based on honeycomb structures are outlined including the concept of producing both two-phase foams and foams with composite walls.
Date: February 1, 1997
Creator: Prakash, O.; Embury, J.D.; Sinclair, C.; Sang, H. & Silvetti, P.
Partner: UNT Libraries Government Documents Department

Modeling of the recrystallization textures of Al-alloys after hot deformation

Description: The recrystallization textures of Al-alloys can be explained by a growth selection of grains with an approximate 40{degree}<111> orientation relationship out of a limited spectrum of preferentially formed nucleus orientations. Accordingly, recrystallization textures can be modeled by the multiplication of a function f(g){sup nucl} describing the probability of nucleation of the various orientations with a function f(g){sup grow} representing their growth probability. Whereas the growth probability can be accounted for by a 40{degree}<111> transformation of the rolling texture, the nucleation probability of the respective grains is given by the distribution of potential nucleus orientations, which is known from local texture analysis for the most important nucleation sites in rolled Al-alloys, cube-bands, grain boundaries and second-phase particles. The contribution of each of these nucleation sites are determined according to an approach to calculate the number of nuclei forming at each nucleation site, which is based on microstructural investigations on the evolution of the various nucleation sites during deformation. The paper describes the model for recrystallization texture simulation in Al-alloys and gives examples of recrystallization textures of AA3004 deformed in plane strain compression at a variety of different deformation temperatures and strain rates.
Date: December 1, 1998
Creator: Engler, O. & Vatne, H.E.
Partner: UNT Libraries Government Documents Department

A correlation between EIS and salt spray proof tests for the corrosion resistance of conversion coated aluminum alloys

Description: In this study, 33 different conversion coatings were applied to 5 different Al alloy substrates. Salt spray exposure testing and EIS (electrochemical impedance spectroscopy) were conducted for comparison. A relation was developed.
Date: September 1, 1996
Creator: Buchheit, R.G.; Martinez, M.A.; Cunningham, M.; Jensen, H. & Kendig, M.W.
Partner: UNT Libraries Government Documents Department

Synthesis, characterization and mechanical properties of nanocrystalline NiAl

Description: Nanocrystalline NiAl was produced from pre-cast alloys using an electron beam inert gas condensation system. In-situ compaction was carried out at 100-300 C under vacuum conditions. Energy dispersive spectroscopy was used to determine chemical composition and homogeneity. Average grain sizes in the range 4-10 nm were found from TEM dark field analyses. A compression-cage fixture was designed to perform disk bend tests. These tests revealed substantial room temperature ductility in nanocrystalline NiAl, while coarse grained NiAl showed no measurable room temperature ductility.
Date: November 1, 1996
Creator: Choudry, M.; Eastman, J.A.; DiMelfi, R.J. & Dollar, M.
Partner: UNT Libraries Government Documents Department

Calcium metal as a scavenger for antimony from aluminum alloys

Description: Previous work has shown that trace amounts of antimony (Sb) can affect the mechanical properties of strontium (Sr) modified aluminum castings. ANL has been investigating technology to remove or neutralize Sb to reduce its negative effect on the physical properties of those alloys. Review of past work on processing and recovery of scrap aluminum inferred that calcium (Ca) is an effective scavenger of Sb, bismuth, lead and cadmium. Following up on that lead, we have found that Ca is, indeed, effective for removing Sb from molten aluminum alloys although its effectiveness can be compromised by a wide range of processing conditions. A minimum ratio of about four to one, by weight, of Ca to Sb appears necessary to insure an effective scavenging of contained Sb.in 356 aluminum alloys.
Date: October 4, 1994
Creator: Bonsignore, P.V.; Daniels, E.J. & Wu, C.T.
Partner: UNT Libraries Government Documents Department

Stress Voiding in IC Interconnects - Rules of Evidence for Failure Analysts

Description: Mention the words ''stress voiding'', and everyone from technology engineer to manager to customer is likely to cringe. This IC failure mechanism elicits fear because it is insidious, capricious, and difficult to identify and arrest. There are reasons to believe that a damascene-copper future might be void-free. Nevertheless, engineers who continue to produce ICs with Al-alloy interconnects, or who assess the reliability of legacy ICs with long service life, need up-to-date insights and techniques to deal with stress voiding problems. Stress voiding need not be fearful. Not always predictable, neither is it inevitable. On the contrary, stress voids are caused by specific, avoidable processing errors. Analytical work, though often painful, can identify these errors when stress voiding occurs, and vigilance in monitoring the improved process can keep it from recurring. In this article, they show that a methodical, forensics approach to failure analysis can solve suspected cases of stress voiding. This approach uses new techniques, and patiently applies familiar ones, to develop evidence meeting strict standards of proof.
Date: September 17, 1999
Partner: UNT Libraries Government Documents Department

Laser welding of automotive aluminum alloys to achieve defect-free, structurally sound and reliable welds

Description: The objective of this program was to seek improved process control and weldment reliability during laser welding of automotive aluminum alloys while retaining the high speed and accuracy of the laser beam welding process. The effects of various welding variables on the loss of alloying elements and the formation of porosity and other geometric weld defects such as underfill and overfill were studied both experimentally and theoretically.
Date: November 17, 2000
Creator: DebRoy, T.
Partner: UNT Libraries Government Documents Department

A method for treating electrolyte to remove Li{sub 2}O

Description: Electrorefining has been used in processes for recovering uranium and plutonium metals from spent nuclear fuel. The electrorefining is performed in an electrochemical cell in which the chopped fuel elements from the reactor forms the anode, the electrolyte, preferably, is the fused eutectic salt of the LiCl-KCl which contain UCl{sub 3} and PuCl{sub 3}. Purified metal collected at the cathode collects at the bottom of the cell. This invention provides a method for removing lithium oxide from the electrolyte salt, with the end formation of a solid lithium-aluminium alloy.
Date: April 1, 1998
Creator: Tomczuk, Z.; Miller, W.E.; Johnson, G.K. & Willit, J.L.
Partner: UNT Libraries Government Documents Department

Advanced manufacturing by spray forming: Aluminum strip and microelectromechanical systems

Description: Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. INEL is developing a unique spray-forming method based on de Laval (converging/diverging) nozzle designs to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Properties of the spray-formed material are tailored by controlling the characteristics of the spray plume and substrate. Two examples are described: high-volume production of aluminum alloy strip, and the replication of micron-scale features in micropatterned polymers during the production of microelectromechanical systems.
Date: December 31, 1994
Creator: McHugh, K.M.
Partner: UNT Libraries Government Documents Department

Relationship between High-Strain-Rate Superplasticity and Interface Microstructure in Aluminum Alloy Composites

Description: The Al alloy composites reinforced with Si<sub>3</sub>N<sub>4</sub> or SiC have been reported to exhibit superplasticity at high strain rate of faster than 1x 10<sup>-2</sup>s<sup>-1</sup>. It has been shown in many aluminum alloy composites that the optimum superplastic temperature coincides with an incipient melting temperature. The coincidence suggests a contribution of the liquid phase to the superplasticity mechanism. This paper shows a direct evidence of partial melting along matrix grain boundaries and matrix-reinforcement interfaces. Based on the obtained results, the role of the liquid phase in the high-strain-rate superplasticity is discussed. The sample was Al-Mg (5052) alloy reinforced with 20vol% Si<sub>3</sub>N<sub>4</sub> particles, fabricated by a powder metallurgy process. The sample showed an excellent superplasticity under the conditions given in Table 1. Partial melting was confirmed to occur at 821 K by differentail scanning calorimetry. The microstructural changes during heating were observed in situ by TEM using a heating stage. The structure of interfaces and grain boundaries was observed by HREM. Chemical analysis was performed with EDS attached to VG-STEM. A bright-field image of the composite is shown in Fig. 1. Notice that the edge of the Si3N4 particles are fragmented. Fig. 2 (a) shows a selected-area diffraction pattern taken at 821 K. A halo ring appears at this temperature, indicating partial melting. Fig. 2 (b) shows a dark- field image with an inverted contrast, taken from a part of the halo ring. The location of partial melting can be identified by a dark contrast along the matrix grain boundaries and the matrix- reinforcement interfaces. Above this temperature, grain-boundary corners become a rounded shape caused by the formation of the liquid phase at triple grain junctions. Figure 3 shows a concentration profile across a matrix-reinforcement interface. The left side is the aluminum matrix and the right is a Si<sub>3</sub>N<sub>4</sub> particle. In the ...
Date: February 1, 1999
Creator: Koike, J.; Mitchell, T.E. & Sickafus, K.E.
Partner: UNT Libraries Government Documents Department

Fracture toughness and impact properties of laminated metal composites

Description: Laminated metal composites consist of alternating metal (or metal matrix composite) layers bonded together. These materials can provide fracture toughness and impact properties superior to those of the component materials. These properties are a function of component material properties, laminate architecture (volume fraction, thickness) and interface properties. Properties are compared for seven lightweight materials.
Date: March 4, 1996
Creator: Lesuer, D.R.; Riddle, R.A.; Gogolewski, R.P.; Syn, C.K. & Cunningham, B.J.
Partner: UNT Libraries Government Documents Department

Multi-kiloampere, electron-beam generation from bare aluminum photo-cathodes driven by an ArF laser

Description: An electron-beam-pumped laser operating at ArF (193 nm) producing up to 5.0 joules in a 150-ns pulse has been used to illuminate micro-machined aluminum cathodes. The cathode was pulsed from 2.25- up to 2.95-MV across a 20-cm-AK gap producing fields up to 145 kV/cm using REX (a 4-MeV, 5-kA, 100-ns pulsed diode). Extracted current versus laser power gives a quantum efficiency increasing with power density from 0.07 to 0.11%. The present work is significant in that the cathode operates in the presence of out-gassing materials with a background vacuum pressure in the mid 10{sup {minus}6} torr region and 100-ns-long electron beams of up to 3 kA have been produced. Both emission limited (current follows laser pulse) and space-charge-limited (current follows pulsed power) regimes have been studied up to {approximately} 50 A/cm{sup 2} by varying the cathode diameter. The beam temperature has been measured to be < 5 eV and directly compared in the same experimental setup to velvet based cathodes that measure {approximately} 100 eV.
Date: October 1, 1997
Creator: Carlson, R.L.; Ridlon, R.N.; Seitz, G.J. & Hughes, T.P.
Partner: UNT Libraries Government Documents Department