6 Matching Results

Search Results

Advanced search parameters have been applied.

Characterizaton of Triethoxyfluorosilane and Tetraethoxysilane Based Aerogels

Description: Aerogels are highly porous, low dielectric constant (low k) materials being considered by the semiconductor industry as an interlayer dielectric. Low k materials are needed to overcome capacitance problems that limit device feature sizes. Precursors triethoxyfluorosilane (TEFS) and tetraethoxysilane (TEOS) were used to prepare bulk aerogels. Samples were prepared by sol-gel methods, and then carbon dioxide supercritically-dried. Effects of varying the water to precursor ratio were studied with respect to aerogel properties and microstructure. Methods of analysis for this study include FTIR-ATR, TEM, RBS, EDS, SEM, dielectric constant determination by impedance and surface area by gas adsorption. Si-F bonds were determined to be present in both acid- and base-catalyzed TEFS as well as HF-catalyzed TEOS. Fluorine promotes a fractal network microstructure as opposed to a particle-like microstructure. Surface area and dielectric constant were determined to increase slightly with increases in the water to precursor ratio.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2001
Creator: Roepsch, Jodi Ann
Partner: UNT Libraries

Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems

Description: A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method'™s potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H{sub 2} dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH{sub 4}){sub 4} stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH{sub 4}){sub 2} and Mg(BH{sub 4}){sub 2} in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH{sub 4}){sub 4} ligand complex in SiO{sub 2} aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of Ca(BH{sub 4}){sub 2} and Mg(BH{sub 4}){sub 2} in nano-frameworks did not improve their H{sub 2} absorption due to the formation of stable alkaline earth B12H12 intermediates upon rehydrogenation. This project primarily investigated the effect of nano-framework surface chemistry on hydride properties, while the effect of pore ...
Date: June 30, 2010
Creator: Xia Tang , Susanne M. Opalka , Daniel A. Mosher, Bruce L. Laube, Ronald J. Brown, Thomas H. Vanderspurt, Sarah Arsenault, Robert Wu, Jamie Strickler, Ewa. Ronnebro, Tim. Boyle and Joseph Cordaro
Partner: UNT Libraries Government Documents Department

Characterization of Methyltrimethoxysilane Sol-Gel Polymerization and the Resulting Aerogels.

Description: Methyl-functionalized porous silica is of considerable interest as a low dielectric constant film for semiconductor devices. The structural development of these materials appears to affect their gelation behaviors and impact their mechanical properties and shrinkage during processing. 29Si solution NMR was used to follow the structural evolution of MTMS (methyltrimethoxysilane) polymerization to gelation or precipitation, and thus to better understand the species that affect these properties and gelation behaviors. The effects of pH, water concentration, type of solvents, and synthesis procedures (single step acid catalysis and two-step acid/base catalysis) on MTMS polymerization were discussed. The reactivity of silicon species with different connectivity and the extent of cyclization were found to depend appreciably on the pH value of the sol. A kinetic model is presented to treat the reactivity of both silicon species involved in condensations separately based on the inductive and steric effects of these silicon species. Extensive cyclization in the presence of acid, which was attributed to the steric effects among numerous reaction pathways for the first time, prevents MTMS gelation, whereas gels were obtained from the two-step method with nearly random condensations. The experimental degree of condensation (DC) at the gel point using the two-step procedure was determined to be 0.86, which is considerably higher than that predicted by the current accepted theories. Both chemical and physical origins of this high value were suggested. Aerogels dried by supercritical CO2 extraction were characterized by FTIR, 13C and 29Si solid-state NMR and nitrogen sorption. The existence of three residual groups (Si-OH, Si-OCH3, and Si-OC2H5) was confirmed, but their concentrations are very low compared to silica aerogels. The low concentrations of the residual groups, along with the presence of Si-CH3, make MTMS aerogels permanently hydrophobic. To enhance applicability, MTMS aerogels were successfully prepared that demonstrated shrinkage less than 10% after supercritical ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2003
Creator: Dong, Hanjiang
Partner: UNT Libraries

Desalting in wastewater reclamation using capacitive deionization with carbon aerogel electrodes

Description: Capacitive deionization with carbon aerogel electrodes is an efficient and economical new process for removing salt and impurities from water. Carbon aerogel is a material that enables the successful purification of water because of its high surface area, optimum pore size, and low electrical resistivity. The electrodes are maintained at a potential difference of about one volt; ions are removed from the water by the imposed electrostatic field and retained on the electrode surface until the polarity is reversed. The capacitive deionization of water with a stack of carbon aerogel electrodes has been successfully demonstrated. The overall process offers advantages when compared to conventional water-purification methods, requiring neither pumps, membranes, distillation columns, nor thermal heaters. Consequently, the overall process is both robust and energy efficient. The current state of technology development commercialization, and potential applications of this process are reviewed. Particular attention and comparison with alternate technologies will be done for seawater, brackish water, and desalting in wastewater reclamation.
Date: July 1, 1996
Creator: Richardson, J.H.; Farmer, J.C.; Fix, D.V.; de Pruneda, J.A.H.; Mack, G.V.; Poco, J.F. et al.
Partner: UNT Libraries Government Documents Department

Spectroscopic diagnosis of foam z-pinch plasmas on SATURN

Description: Solid and annular silicon aerogel and agar foams were shot on the accelerator SATURN to study plasma initiation, acceleration, and stagnation. SATURN delivers 7 MA with a 50 nsec rise time to these foam loads. We fielded several spectroscopic diagnostics to measure plasma parameters throughout the z-pinch discharge. A spatially resolved single frame time-gated EUV spectrometer measured the extent of plasma ablation off the surface foam. A time integrated crystal spectrometer showed that characteristic K shell radiation of silicon in the aerogel and of S and Na impurities in the agar were all attenuated when the foam loads were coated with a conductive layer of gold. The time resolved pinhole camera showed that in general the quality of the pinch implosions was poor but improved with increasing efforts to improve current continuity such as prepulse and conductive coatings.
Date: June 1996
Creator: Nash, T. J.; Derzon, M. S.; Allshouse, G.; Deeney, C.; Jobe, D.; McGurn, J. et al.
Partner: UNT Libraries Government Documents Department

Current initiation in low-density foam z-pinch plasmas

Description: Low density agar and aerogel foams were tested as z-pinch loads on the SATURN accelerator. In these first experiments, we studied the initial plasma conditions by measuring the visible emission at early times with a framing camera and 1-D imaging. At later time, near the stagnation when the plasma is hotter, x-ray imaging and spectral diagnostics were used to characterize the plasma. Filamentation and arcing at the current contacts was observed. None of the implosions were uniform along the z-axis. The prime causes of these problems are believed to be the electrode contacts and the current return configuration and these are solvable. Periodic phenomena consistent with the formation of instabilities were observed on one shot, not on others, implying that there may be a way of controlling instabilities in the pinch. Many of the issues involving current initiation may be solvable. Solutions are discussed.
Date: July 1, 1996
Creator: Derzon, M.; Nash, T. & Allshouse, G.
Partner: UNT Libraries Government Documents Department