2,870 Matching Results

Search Results

Advanced search parameters have been applied.

Investigation of Aerodynamic and Icing Characteristics of a Flush Alternate Inlet Induction System Air Scoop

Description: An investigation has been made in the NACA Lewis icing research tunnel to determine the aerodynamic and icing characteristics of a full-scale induction-system air-scoop assembly incorporating a flush alternate inlet. The flush inlet was located immediately downstream of the offset ram inlet and included a 180 deg reversal and a 90 deg elbow in the ducting between inlet and carburetor top deck. The model also had a preheat-air inlet. The investigation was made over a range of mass-air- flow ratios of 0 to 0.8, angles of attack of 0 and 4 deg airspeeds of 150 to 270 miles per hour, air temperatures of 0 and 25 F various liquid-water contents, and droplet sizes. The ram inlet gave good pressure recovery in both clear air and icing but rapid blockage of the top-deck screen occurred during icing. The flush alternate inlet had poor pressure recovery in both clear air and icing. The greatest decreases in the alternate-inlet pressure recovery were obtained at icing conditions of low air temperature and high liquid-water content. No serious screen icing was observed with the alternate inlet. Pressure and temperature distributions on the carburetor top deck were determined using the preheat-air supply with the preheat- and alternate-inlet doors in various positions. No screen icing occurred when the preheat-air system was operated in combination with alternate-inlet air flow.
Date: July 24, 1953
Creator: Lewis, James P.
Partner: UNT Libraries Government Documents Department

Investigation of Inlet Control Parameters for an External-Internal-Compression Inlet from Mach 2.1 to 3.0

Description: Investigation of the control parameters of an external-internal compression inlet indicates that the cowl-lip shock provides a signal to position the spike and to start the inlet over a Mach number range from 2.1 to 3.0. Use of a single fixed probe position to control the spike over the range of conditions resulted in a 3.7-count loss in total-pressure recovery at Mach 3.0 and 0 deg angle of attack. Three separate shock-sensing-probe positions were required to set the spike for peak recovery from Mach 2.1 to 3.0 and angles of attack from 0 deg to 6 deg. When the inlet was unstarted, an erroneous signal was obtained from the normal-shock control through most of the starting cycle that prevented the inlet from starting. Therefore, it was necessary to over-ride the normal-shock control signal and not allow the control to position the terminal shock until the spike was positioned.
Date: September 23, 1958
Creator: Anderson, B. H. & Bowditch, D. N.
Partner: UNT Libraries Government Documents Department

Preliminary Wind-Tunnel Investigation of the Performance of Republic F-105 Wing-Root Inlet Configurations at Various Angles of Attack and a Mach Number of 2.01

Description: A 1/13-scale model of the forebody of the Republic F-105 with twin-duct wing-root inlets was tested in the Langley 4- by 4-foot supersonic pressure tunnel through a range of angle of attack from -4 deg to 15 deg at a Mach number of 2.01 and a Reynolds number of approximately 3.4 x 10(exp 6) per foot. The tests were made with four configurations which incorporated varying amounts of sweep and stagger of the inlet leading edges, modifications to the areas of the boundary-layer diverter floor plate, and modifications to the area of the boundary-layer diverter bleed slots. The highest overall pressure recovery at an angle of attack of 0 deg (average total-pressure recovery, 0.84 mass-flow ratio, 0.98) was achieved with configuration having an inlet leading-edge sweep angle of 58 deg with no leading-edge stagger. Stagger was found to improve the angle-of- attack performance, but at a sacrifice in inlet efficiency for an angle of attack of 0 deg. The boundary-layer diverter floor height, of the order of one boundary-layer thickness, was satisfactory for bypassing the fuselage boundary layer. The boundary-layer diverter-plate bleed slots were effective in increasing the total-pressure recovery of the inlet. The total-pressure-recovery contour plots, taken at the compressor-face station, indicate the existence of high-velocity "cores" throughout the inlet operating range.
Date: January 15, 1957
Creator: Kouyoumjian, W. L.
Partner: UNT Libraries Government Documents Department

Experimental and Analytical Investigation of the Transonic and Supersonic Divergence Characteristics of a Delta-Plan-Form All- Movable Control

Description: The static aeroelastic divergence characteristics of a delta-planform model of the canard control surface of a proposed air-to-ground missile have been studied both analytically and experimentally in the Mach number range from 0.6 to 3.0. The experiments indicated that divergence occurred at a nearly constant value of dynamic pressure at Mach numbers up to 1.2. At higher Mach numbers somewhat higher values of dynamic pressure were required to produce divergence. The analysis and the experiment indicate that the camber stiffness of the control surface and the stiffness of the control actuator are both important in divergence of surfaces of this type.
Date: August 4, 1958
Creator: Rainey, A. G.; Hanson, P. W. & Martin, D. J.
Partner: UNT Libraries Government Documents Department

Experimental and Theoretical Determination of Forces and Moments on a Store and on a Store- Pylon Combination Mounted on a 45 Deg Swept- Wing-Fuselage Configuration at a Mach Number of 1.61

Description: Forces and moments of store-pylon combination mounting on swept wing-fuselage configuration in supersonic pressure tunnel.
Date: January 30, 1958
Creator: Carlson, H. W.; Geier, D. J. & Morris, O. A.
Partner: UNT Libraries Government Documents Department

Tabulated Pressure Data for a Series of Controls on a 40 Deg Sweptback Wing at Mach Numbers of 1.61 and 2.01

Description: An investigation has been made at Mach numbers of 1.61 and 2.01 and Reynolds numbers of 1.7 x l0(exp 6) and 3.6 x l0(exp 6) to determine the pressure distributions over a swept wing with a series of 14 control configurations. The wing had 40 deg of sweep of the quarter-chord line, an aspect ratio of 3.1, and a taper ratio of 0.4. Measurements were made at angles of attack from 0 deg to +/- 15 deg for control deflections from -60 deg to 60 deg. This report contains tabulated pressure data for the complete range of test conditions.
Date: November 8, 1957
Creator: Lord, D. R.
Partner: UNT Libraries Government Documents Department

Free-Spinning-Tunnel Investigation of a 1/24-Scale Model of the Grumman AF-2S, -2W Airplane

Description: An investigation of the spin and recovery characteristics of a 1/24-scale model of the Grumman AF-2S, -2W airplane was conducted in the Langley 20-foot free-spinning tunnel. The effects of controls on the erect and inverted spin and recovery characteristics for a range of possible loadings of the.airplane were determined. The effect of a revised-tail installation (small dual fins added to the stabilizer of the original tail and the vertical-tail height of the original tail increased) and the effect of various ventral-fin and antispin-fillet installations were determined. The investigation also included spin-recovery parachute tests.
Date: March 12, 1950
Creator: Klinar, Walter J. & Wilson, Jack H.
Partner: UNT Libraries Government Documents Department

Flight Test Results of Rocket-Propelled Buffet-Research Models Having 45 Degree Sweptback Wings and 45 Degree Sweptback Tails Located in the Wing Chord Plane

Description: Three rocket-propelled buffet-research models have been flight tested to determine the buffeting characteristics of a swept-wing- airplane configuration with the horizontal tail operating near the wing wake. The models consisted of parabolic bodies having 45deg sweptback wings of aspect ratio 3.56, at aspect ratio of 0.3, NACA 64A007 airfoil sections, and tail surfaces of geometry and section identical to the wings. Two tests were conducted with the horizontal tail located in the wing chord plane with fixed incidence angles of -1.5deg on one model and 0deg on the other model. The third test was conducted with no horizontal tail. Results of these tests are presented as incremental accelerations in the body due to buffeting, trim angles of attack, trim normal- and side-force coefficients, wing-tip helix angles, static-directional-stability derivatives , and drag coefficients plotted against Mach number. These data indicate that mild low-lift buffeting was experienced by all models over a range of Mach number from approximately 0.7 to 1.4. It is further indicated that this buffeting was probably induced by wing-body interference and was amplified at transonic speeds by the horizontal tail operating in the wing wake. A longitudinal trim change was encountered by the tail-on models at transonic speeds, but no large changes in side force and no wing dropping were indicated.
Date: November 4, 1953
Creator: Mason, Homer P.
Partner: UNT Libraries Government Documents Department

Supersonic Wave Drag of Sweptback Tapered Wings at Zero Lift

Description: On the basis of a recently developed theory for sweptback wings at supersonic velocities, equations are derived for the wave drag of sweptback tapered wings with thin symmetrical double-wedge sections at zero lift. Calculations of section wave-drag distributions and wing wave drag are presented for families of tapered plan forms. Distributions of section wave drag along the span of tapered wings are, in general, very similar in shape to those of untapered plan forms. For a given taper ratio and aspect ratio, an appreciable reduction in wing wave-drag coefficient with increased sweepback is noted for the entire range of Mach number considered. For a given sweep and taper ratio, higher aspect ratios reduce the wing wave-drag coefficient at substantially subcritical supersonic Mach numbers. At Mach numbers approaching the critical value, that is, a value equal to the secant of the sweepback angle, the plan forms of low aspect ratio have lower drag coefficients. Calculations for wings of equal root bending stress (and hence different aspect ratio) indicate that tapering the wing reduces the wing wave-drag coefficient at Mach numbers considerably less than the critical value and a decrease of the drag coefficient with taper at Mach numbers near the critical value.
Date: October 6, 1947
Creator: Margolis, Kenneth
Partner: UNT Libraries Government Documents Department

Preliminary Note on a Correlation of a Boundary-Layer Transition Results on Highly Cooled Blunt Bodies

Description: Transition data on highly cooled blunt bodies are correlated in terms of the ratio of wall to local-stream enthalpy, Reynolds number based on displacement thickness, and location of transition. The proposed correlation, although not sensitive enough to predict the exact location of transition does predict the enthalpy ratio below which very early transition on blunt bodies is expected. The correlation is not altered by moderate amounts of surface roughness; however, the location of transition may well be affected by roughness.
Date: October 14, 1957
Creator: Wisniewski, Richard J.
Partner: UNT Libraries Government Documents Department