2,286 Matching Results

Search Results

Advanced search parameters have been applied.

Radioassay of Thin-Layer Chromatograms: Blueprints for Zonal Scraper

Description: From introduction: The radioassay of thin-layer chromatography (TLC) plates has been improved in this laboratory by designing a scraping device for rapid and quantitative transfer of extremely small zones of adsorbent from narrow glass plates into counting vials.
Date: April 1964
Creator: Synder, Fred; Alford, T. J.; Kimble, Harry & Underwood, Harvey
Partner: UNT Libraries Government Documents Department

Solid Sorbents for CO2 Capture from Post-Combustion and Pre-Combustion Gas Streams

Description: A novel liquid impregnated solid sorbent was developed for CO2 removal in the temperature range of ambient to 60 °C for both fixed bed and fluidized bed reactor applications. The sorbent is regenerable at 60-80 °C. Multi-cycle tests conducted in an atmospheric bench scale reactor with simulated flue gas demonstrated that the sorbent retains its CO2 sorption capacity with CO2 removal efficiency of about 99%. A second, novel solid sorbent containing mixture of alkali earth and alkali compounds was developed for CO2 removal at 200-315 °C from high pressure gas streams (i.e., suitable for IGCC systems). The sorbent showed very high capacity for CO2 removal from gas streams containing 28% CO2 at 200 °C and 11.2 atm during lab-scale flow reactor tests as well as regenerability at 375 °C.
Date: August 1, 2007
Creator: Siriwardane, R.V.; Robinson, C. & Stevens, R.W.
Partner: UNT Libraries Government Documents Department

Graphitized needle cokes and natural graphites for lithium intercalation

Description: This paper examined effects of heat treatment and milling (before or after heat treatment) on the (electrochemical) intercalating ability of needle petroleum coke; natural graphite particles are included for comparison. 1 tab, 4 figs, 7 refs.
Date: May 10, 1996
Creator: Tran, T.D.; Spellman, L.M.; Pekala, R.W.; Goldberger, W.M. & Kinoshita, K.
Partner: UNT Libraries Government Documents Department

Selective Lipid Absorption

Description: An experiment was designed to study in the same animal any preferential absorption of a free fatty acid in the presence of a triglyceride of the same fatty acid. Rats were administered a mixture of free fatty acid and its triglyceride labeled with carbon-13 and carbon-14 respectively. Each isotope in the fed lipid and in the lipid recovered from the gastrointestinal tract was measured. The isotope effect, if any, was studied by administering a mixture of palmitic acid-1-C13 and palmitic acid-1-C14.
Date: January 1960
Creator: Marcia, John Albion
Partner: UNT Libraries

The Adsorption of Radioactive Isotopes on Precipitates

Description: This thesis concerns the investigation of radioisotopes as indicators for precipitation reactions. As a precipitate forms in the presence of a radioisotope, adsorption may take place on its surface. If this adsorption changes markedly at the stoichiometric point it will be possible to use this variation as an indicator for the reaction.
Date: January 1954
Creator: Bulloch, Newman Payne
Partner: UNT Libraries

Associations between iron oxyhydroxide nanoparticle growth and metal adsorption/structural incorporation

Description: The interaction of metal ions and oxyanions with nanoscale mineral phases has not yet been extensively studied despite the increased recognition of their prevalence in natural systems as a significant component of geomedia. A combination of macroscopic uptake studies to investigate the adsorption behavior of As(V), Cu(II), Hg(II), and Zn(II) onto nanoparticulate goethite ({alpha}-FeOOH) as a function of aging time at elevated temperature (75 C) and synchrotron-based X-ray studies to track changes in both the sorption mode and the rate of nanoparticle growth reveal the effects that uptake has on particle growth. Metal(loid) species which sorb quickly to the iron oxyhydroxide particles (As(V), Cu(II)) appear to passivate the particle surface, impeding the growth of the nanoparticles with progressive aging; in contrast, species that sorb more slowly (Hg(II), Zn(II)) have considerably less impact on particle growth. Progressive changes in the speciation of these particular metals with time suggest shifts in the mode of metal uptake with time, possibly indicating structural incorporation of the metal(loid) into the nanoparticle; this is supported by the continued increase in uptake concomitant with particle growth, implying that metal species may transform from surface-sorbed species to more structurally incorporated forms. This type of incorporation would have implications for the long-term fate and mobility of metals in contaminated regions, and affect the strategy for potential remediation/modeling efforts.
Date: September 15, 2008
Creator: Kim, C.S.; Lentini, C.J. & Waychunas, G.A.
Partner: UNT Libraries Government Documents Department

Cyclotron resonance absorption by a hydrogen plasma

Description: From introduction: "The work described in this report was undertaken as part of an experimental study to determine the effectiveness of radiofrequency field in heating the ions of a hydrogen or deuterium plasma. The ultimate aim is to find a method of heating a deuterium plasma until an appreciable rate of nuclear reaction takes place."
Date: August 30, 1957
Creator: Chambers, Edmund S.
Partner: UNT Libraries Government Documents Department

Specifications and Fabrication Procedures on Europium-Bearing Absorber Rods for Reactivity Control in Core II of SM-1

Description: From abstract: "This report is concerned with the specifications and fabrication procedures developed and concerned with the specifications and fabrication procedures developed and adopted for manufacturing the prototype component."
Date: 195u
Creator: Leitten, C. F., Jr.; Beaver, R. J. & Cunningham, J. E.
Partner: UNT Libraries Government Documents Department

Reactive Spreading of a Lead-Free Solder on Alumina

Description: The wetting of Sn3Ag-based alloys on Al{sub 2}O{sub 3} has been studied using the sessile-drop configuration. Small additions of Ti decrease the contact angle of Sn3Ag alloys on alumina from 115 to 23 degrees. Adsorption of Ti-species at the solid-liquid interface prior to reaction is the driving force for the observed decrease in contact angle, and the spreading kinetics is controlled by the kinetics of Ti dissolution into the molten alloy. The addition of Ti increases the transport rates at the solid-liquid interface, resulting in the formation of triple-line ridges that pin the liquid front and promote a wide variability in the final contact angles.
Date: December 1, 2005
Creator: Gremillard, L.; Saiz, E.; Radmilovic, V.R. & Tomsia, A.P.
Partner: UNT Libraries Government Documents Department

Adsorption and molecular siting of CO₂, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation

Description: This article discusses the use of neutron diffraction and molecular simulations to investigate the framework expansion behaviour and the accessibility of the small pockets to N₂, O₂, and CO₂.
Date: March 9, 2017
Creator: Moghadam, Peyman Z.; Ivy, Joshua F.; Arvapally, Ravi K.; dos Santos, Antonio M.; Pearson, John C.; Zhang, Li et al.
Partner: UNT College of Arts and Sciences

Activation Cross Sections by Boron Absorption

Description: The following report studies the neutron activation cross-sections with the insertion of boron absorbers in the energy region 10 to 20,000 ev and the elements within the range.
Date: 1948
Creator: Dancoff, Sidney M., 1913-1951; Kubitschek, H.; Lichtenberger, H. V.; Monk, G. D. & Nobles, R. G.
Partner: UNT Libraries Government Documents Department

Equilibrium binding studies of mono, di and triisocyanide ligands on Au powder surfaces

Description: The author`s group has previously shown that isocyanides are readily adsorbed from solutions to Au powder and bind to the Au surface in an end-on fashion through the terminal carbon. Later work demonstrated that the equilibrium constants for the reversible adsorption of electronically inequivalent isocyanides could be obtained using the Langmuir isotherm technique. This dissertation describes two projects completed which complement the initial findings of this group. Initially, several alkylisocyanides were synthesized to examine the effect of tail length on Au powder adsorption. It was observed that the length of the alkyl chain affected not only the Au surface binding affinity, but also the rate of surface saturation and saturation coverage values. Direct competition studies were also studied using a {sup 13}C-labeled isocyanide. These studies demonstrated the stabilization afforded by substrate-substrate packing forces in SAM`s formed by the longer chain isocyanides. In a second study, di and triisocyanides were synthesized to determine the effect that the length of the connecting link and the number of isocyanide groups (as points of attachment) have on Au adsorption stability. The work in this area describes the binding modes, relative binding affinities and surface coverage values for a series of flexible alkyl and xylyldiisocyanides on Au powder surfaces. This report contains only the introductory material, and general summary. Two chapters have been processed separately. 56 refs.
Date: October 8, 1997
Creator: Ontko, A.
Partner: UNT Libraries Government Documents Department

Study of lead sorption on magnetite at high temperatures.

Description: Lead's uptake on magnetite has been quantitatively evaluated in the present study at a temperature of 200°C and pH of 8.5 with lead concentrations ranging from 5 ppm to175 ppm by equilibrium adsorption isotherms. The pH independent sorption behavior suggested lead sorption due to pH independent permanent charge through weak electrostatic, non-specific attraction where cations are sorbed on the cation exchange sites. The permanent negative charge could be a consequence of lead substitution which is supported by increase in the lattice parameter values from the X-ray diffraction (XRD) results. Differential scanning calorimetry (DSC/TGA) results showed an increase of exothermic (magnetite to maghemite transformation) peak indicating substitution of lead ions due to which there is retardation in the phase transformation. Presence of outer sphere complexes and physical sorption is further supported by Fourier transformed infrared spectroscopy (FTIR). None of the results suggested chemisorption of lead on magnetite.
Date: December 2006
Creator: Paliwal, Vaishali
Partner: UNT Libraries


Description: The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of off-gas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data is obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data and parameters were input into the adsorption model to develop models specific for krypton adsorption. The same can be done for iodine, xenon, and tritium. The model will be validated with experimental breakthrough curves. Customers will be given access to OSPREY to used ...
Date: January 1, 2013
Creator: Rutledge, Veronica J.
Partner: UNT Libraries Government Documents Department

Development and Test Evaluations for Ni-DOBDC Metal Organic Framework (MOF) Engineered Forms

Description: A joint effort to prepare engineered forms of a Ni-DOBDC metal organic framework (MOF) was completed with contributions from PNNL, SNL and the INL. Two independent methods were used at INL and SNL to prepare engineered form (EF) sorbents from Ni-DOBDC MOF powder developed and prepared at PNNL. Xe and Kr capacity test evaluations were performed at ambient temperature with the cryostat experimental setup at INL. The initial INL EF MOF test results indicated a Xe capacity of 1.6 mmol/kg sorbent and no Kr capacity. A large loss of surface area also occurred during minimal testing rendering the INL EF MOF unusable. Four capacity tests were completed using the SNL EF MOF at ambient temperature and resulted in Xe capacities of 1.4, 4.2, 5.0 and 3.8 mmol/kg sorbent with no Kr capacity observed in any ambient temperature tests. Two additional capacity tests were performed at 240 K to further evaluate SNL EF MOF performance. Xe capacities of 50.7 and 49.3 mmol/kg of sorbent and Kr capacities of 0.77 and 0.69 mmol/kg of sorbent were obtained, respectively. Following the adsorption evaluations, the SNL EF MOF material had lost about 40 % of the initial mass and 40 % of the initial surface area. In general, the Xe capacity results at ambient temperature for the INL and SNL EF Ni-DOBDC MOF’s were lower than 9.8 mmol Xe/kg sorbent test results reported by INL in FY-12 using PNNL’s inital EF supplied material.
Date: July 1, 2013
Creator: Garn, Troy G. & Greenhalgh, Mitchell
Partner: UNT Libraries Government Documents Department