466 Matching Results

Search Results

Advanced search parameters have been applied.

Segue between Favorable and Unfavorable Solvation

Description: Solvation of small and large clusters are studied by simulation, considering a range of solvent-solute attractive energy strengths. Over a wide range of conditions, both for solvation in the Lennard-Jones liquid and in the SPC model of water, it is shown that the mean solvent density varies linearly with changes in solvent-solute adhesion or attractive energy strength. This behavior is understood from the perspective of Weeks theory of solvation [Ann. Rev. Phys. Chem. 2002, 53, 533] and supports theories based upon that perspective.
Date: March 21, 2007
Creator: Maibaum, Lutz & Chandler, David
Partner: UNT Libraries Government Documents Department

Mechanical Properties of Polymer Modified Mortar

Description: The mechanical properties of the polymer-modified mortar are markedly improved over conventional cement mortar. We utilized recycled ABS in powder form and a polymer latex emulsion, polymer percentage ranges from 0 to 25 percent by polymer/cement ratio were investigated. The mechanical properties investigated were compression strength and adhesion strength. Compression strength effects did not have an impact on adhesion strength. Adhesion strength was calculated with pullout testing apparatus designed by the author. Results indicate that recycled ABS had a lower adhesive strength than the acrylic latex emulsion and the base mortar, but did increase in adhesive strength when mixed with maleic-anhydride. The adhesive strength was investigated for a Fiber Reinforced Polymer (FRP) made of an "E" glass fiber that is a continuous strand roving oriented and pre-tensioned longitudinally in an isopthalic polyester matrix material. The FRP rebar was compared to standard steel rebars, and found that the standard steel corrugated rebar had a higher adhesive strength, due to mechanical interlocking. This was clarified by measurements using a smooth steel rebar. Characterization of the polymer-modified mortar was conducted by pore analysis and scanning electron microscopy. Scanning Electron Microscopy was implemented to view the polymer particles, the cement fibrils formed by the hydration, and to prove Ohama's theory of network structure.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2002
Creator: Palos, Artemio
Partner: UNT Libraries

Acid-Base Interactions at the Molecular Level: Adhesion and Friction Studies with Interfacial Force Microscopy

Description: To examine the forces of acid-base adhesive interactions at the molecular level, we utilize the scanning probe Interracial Force Microscope (IFM). Unlike cantilever-based atomic force microscopes, the EM is a non-compliant, mechanically stable probe that provides a complete adhesive profile without jump-to-contact. In this way, we are able to quantitatively measure the work of adhesion and bond energies at well-defined, nanometer-scale single asperity contacts. In particular, we will discuss the displacement-controlled adhesive forces between self-assembled monolayer of functionalized alkanethiols strongly bound to a gold substrate and a similarly functionalized tip. We also discuss a method utilizing decoupled lateral and normal force sensors to simultaneously observe the onset of both friction and chemical bond formation. Measurements show that friction can be directly attributed to bond formation and rupture well before repulsive contact.
Date: December 9, 1998
Creator: Burns, A.R.; Carpick, R.W.; Houston, J.E. & Michalske, T.A.
Partner: UNT Libraries Government Documents Department

Diffusion Barriers/Adhesion Promoters. Surface and Interfacial Studies of Copper and Copper-Aluminum Alloys

Description: The focus of this research is to study the interaction between copper and the diffusion barrier/adhesion promoter. The behavior of copper sputter-deposited onto sputter-cleaned tantalum nitride is investigated. The data show that copper growth on tantalum nitride proceeds with the formation of 3-D islands, indicating poor adhesion characteristics between copper and Ta0.4N. Post-annealing experiments indicate that copper will diffuse into Ta0.4N at 800 K. Although the data suggests that Ta0.4N is effective in preventing copper diffusion, copper's inability to wet Ta0.4N will render this barrier ineffective. The interaction of copper with oxidized tantalum silicon nitride (O/TaSiN) is characterized. The data indicate that initial copper depositions result in the formation a conformal ionic layer followed by Cu(0) formation in subsequent depositions. Post-deposition annealing experiments performed indicate that although diffusion does not occur for temperatures less than 800 K, copper "de-wetting" occurs for temperatures above 500 K. These results indicate that in conditions where the substrate has been oxidized facile de-wetting of copper may occur. The behavior of a sputter-deposited Cu0.6Al0.4 film with SiO2 (Cu0.6Al0.4/SiO2) is investigated. The data indicate that aluminum segregates to the SiO2 interface and becomes oxidized. For copper coverages less than ~ 0.31 ML (based on a Cu/O atomic ratio), only Cu(I) formation is observed. At higher coverages, Cu(0) is observed. These data are in contrast with the observed behavior of copper metal deposited onto SiO2 (Cu/SiO2). The data for Cu/SiO2 show that copper does not wet SiO2 and forms 3-D nuclei. Furthermore, post-annealing experiments performed on Cu0.6Al0.4/SiO2 show that neither de-wetting nor diffusion of copper occurs for temperatures up to 800 K, while Cu diffusion into SiO2 occurs ~ 600 K. These data indicate that aluminum alloyed with copper at the SiO2 interface serves as an effective adhesion promoter and thermal diffusion barrier.
Date: August 2000
Creator: Shepherd, Krupanand Solomon
Partner: UNT Libraries

Short Peptides Enhance Single Cell Adhesion and Viability onMicroarrays

Description: Single cell patterning holds important implications forbiology, biochemistry, biotechnology, medicine, and bioinformatics. Thechallenge for single cell patterning is to produce small islands hostingonly single cells and retaining their viability for a prolonged period oftime. This study demonstrated a surface engineering approach that uses acovalently bound short peptide as a mediator to pattern cells withimproved single cell adhesion and prolonged cellular viabilityon goldpatterned SiO2 substrates. The underlying hypothesis is that celladhesion is regulated bythe type, availability, and stability ofeffective cell adhesion peptides, and thus covalently bound shortpeptides would promote cell spreading and, thus, single cell adhesion andviability. The effectiveness of this approach and the underlyingmechanism for the increased probability of single cell adhesion andprolonged cell viability by short peptides were studied by comparingcellular behavior of human umbilical cord vein endothelial cells on threemodelsurfaces whose gold electrodes were immobilized with fibronectin,physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently boundLys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and bindingproperties were characterized by reflectance Fourier transform infraredspectroscopy. Both short peptides were superior to fibronectin inproducing adhesion of only single cells, whereas the covalently boundpeptide also reduced apoptosis and necrosisof adhered cells. Controllingcell spreading by peptide binding domains to regulate apoptosis andviability represents a fundamental mechanism in cell-materialsinteraction and provides an effective strategy in engineering arrays ofsingle cells.
Date: January 19, 2007
Creator: Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Asphahani,Fareid & Zhang, Miqin
Partner: UNT Libraries Government Documents Department

Modeling and design optimization of adhesion between surfaces at the microscale.

Description: This research applies design optimization techniques to structures in adhesive contact where the dominant adhesive mechanism is the van der Waals force. Interface finite elements are developed for domains discretized by beam elements, quadrilateral elements or triangular shell elements. Example analysis problems comparing finite element results to analytical solutions are presented. These examples are then optimized, where the objective is matching a force-displacement relationship and the optimization variables are the interface element energy of adhesion or the width of beam elements in the structure. Several parameter studies are conducted and discussed.
Date: August 1, 2008
Creator: Sylves, Kevin T. (University of Colorado, Boulder, CO)
Partner: UNT Libraries Government Documents Department

Relationship between the adhesive properties of bacteria and their transport and colonization in the subsurface environment. Final report for period September 15, 1996 - September 30, 1999

Description: This research has focused on the attachment of bacteria to solid surfaces and the significance of their adhesion properties in their transport through porous media. Our work has focused on strains of Pseudomonas and a related species Burkholderia cepacia. Most of our experimental strains were isolated from subsurface environments at USDOE experimental field sites. The first portion of this project was conducted at the University of Maryland during 1994-1996, during which two graduates and one graduate student were supported by the award. The project was then continued under contract number DE-FG02-96ER62302 at the University of South Carolina, where one postdoctoral associate has been supported by the award.
Date: April 6, 2000
Creator: Fletcher, Madilyn
Partner: UNT Libraries Government Documents Department

Preparation of pHEMA-CP composites with high interfacial adhesionvia template-driven mineralization

Description: We report a template-driven nucleation and mineral growth process for the high-affinity integration of calcium phosphate (CP) with a poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel scaffold. A mineralization technique was developed that exposes carboxylate groups on the surface of crosslinked pHEMA, promoting high-affinity nucleation and growth of calcium phosphate on the surface along with extensive calcification of the hydrogel interior. External factors such as the heating rate, the agitation of the mineral stock solution and the duration of the process that affect the outcome of the mineralization were investigated. This template-driven mineralization technique provides an efficient approach toward bonelike composites with high mineral-hydrogel interfacial adhesion strength.
Date: December 5, 2002
Creator: Song, Jie; Saiz, Eduardo & Bertozzi, Carolyn R.
Partner: UNT Libraries Government Documents Department

Plasma Treated Multi-Walled Carbon Nanotubes (MWCNTs) for Epoxy Nanocomposites

Description: This article describes the depositing of plasma nanocoating of allylamine on the surfaces of multi-walled carbon nanotubes to provide desirable functionalities and thus to tailor the surface characteristics of multi-walled carbon nanotubes for improved dispersion and interfacial adhesion in epoxy matrices.
Date: December 19, 2011
Creator: Ritts, Andrew C.; Yu, Qingsong; Li, Hao; Lombardo, Stephen J.; Han, Xu; Xia, Zhenhai et al.
Partner: UNT College of Engineering

MCF-10A-NeoST: A New Cell System for Studying Cell-ECM and Cell-Cell Interactions in Breast Cancer

Description: There is a continuing need for genetically matched cell systems to model cellular behaviors that are frequently observed in aggressive breast cancers. We report here the isolation and initial characterization of a spontaneously arising variant of MCF-10A cells, NeoST, which provides a new model to study cell adhesion and signal transduction in breast cancer. NeoST cells recapitulate important biological and biochemical features of metastatic breast cancer, including anchorage-independent growth, invasiveness in threedimensional reconstituted membranes, loss of E-cadherin expression, and increased tyrosine kinase activity. A comprehensive analysis of tyrosine kinase expression revealed overexpression or functional activation of the Axl, FAK, and EphA2 tyrosine kinases in transformed MCF-10A cells. MCF-10A and these new derivatives provide a genetically matched model to study defects in cell adhesion and signaling that are relevant to cellular behaviors that often typify aggressive breast cancer cells.
Date: August 22, 2001
Creator: Zantek, Nicole Dodge; Walker-Daniels, Jennifer; Stewart, Jane; Hansen, Rhonda K.; Robinson, Daniel; Miao, Hui et al.
Partner: UNT Libraries Government Documents Department

Homology with vesicle fusion mediator syntaxin-1a predicts determinants ofepimorphin/syntaxin-2 function in mammary epithelial morphogenesis

Description: We have shown that branching morphogenesis of mammary ductal structures requires the action of the morphogen epimorphin/syntaxin-2. Epimorphin, originally identified as an extracellular molecule, is identical to syntaxin-2, an intracellular molecule that is a member of the extensively investigated syntaxin family of proteins that mediate vesicle trafficking. We show here that although epimorphin/syntaxin-2 is highly homologous to syntaxin-1a, only epimorphin/syntaxin-2 can stimulate mammary branching morphogenesis. We construct a homology model of epimorphin/syntaxin-2 based on the published structure of syntaxin-1a, and we use this model to identify the structural motif responsible for the morphogenic activity. We identify four residues located within the cleft between helices B and C that differ between syntaxin-1a and epimorphin/syntaxin-2; through site-directed mutagenesis of these four amino acids, we confer the properties of epimorphin for cell adhesion, gene activation, and branching morphogenesis onto the inactive syntaxin-1a template. These results provide a dramatic demonstration of the use of structural information about one molecule to define a functional motif of a second molecule that is related at the sequence level but highly divergent functionally.
Date: June 3, 2009
Creator: Chen, Connie S.; Nelson, Celeste M.; Khauv, Davitte; Bennett, Simone; Radisky, Evette S.; Hirai, Yohei et al.
Partner: UNT Libraries Government Documents Department

Testing of sludge coating adhesiveness on fuel elements in 105-K west basin

Description: This report summarizes the results from the first sludge adherence tests performed in the 105-K West Basin on N Reactor fuel. The outside surface of the outer fuel elements were brushed, using stainless steel wire brushes, to test the adhesiveness of various types of sludge coatings to the cladding`s surface. The majority of the sludge was removed by the wire brushes in this test but different types of sludge were more adhesive than others. Particularly, an orange rust-like sludge coating that was just slightly more adherent to the fuel`s cladding than the majority of the sludge coatings and a thick white vertical strip sludge coating that was much more difficult to remove. The test demonstrated that all of the sludge could be removed from the outer fuel elements` surfaces if the need arises.
Date: March 11, 1997
Creator: Maassen, D.P., Fluor Daniel Hanford
Partner: UNT Libraries Government Documents Department

Microbial Community Acquisition of Nutrients from Mineral Surfaces. Final Report

Description: Minerals and microbes undergo complex interactions in nature that impact broad aspects of near-surface Earth chemistry. Our primary objective in this project was to gain insight into how microbial species and communities acquire critical but tightly held nutrients residing on or within minerals common in rocks and soils, and to quantitatively study related microbe-mineral interactions including cell adhesion, electron transfer, and siderophore-mineral interaction processes.
Date: June 3, 2003
Creator: Hochella, M. F.
Partner: UNT Libraries Government Documents Department

University of Pittsburgh and FETC CRADA PC96-004, Final Report

Description: DoE/FETc-99/lo90 Cellular deposition is a dynamic phenomenon that may involve both adhesion and detachment, as in thrombosis and thromboembolism. Current techniques for assessing the blood compatibility of opaque biomaterials are limited to endpoint analysis of cellular deposition. To investigate temporal changes in deposition multiple trials with varying duration are generally required.
Date: February 1, 1999
Partner: UNT Libraries Government Documents Department

Self-welding evaluation of reactor materials in flowing sodium

Description: An experimental study was made of the self-welding of various combinations of FBR materials (304 ss, Inconel 718, A286, Stellite 156, and Stellite 6) in sodium at 800 to 1100$sup 0$F for time periods up to 6 months and contact stresses of 2 to 148 ksi. Stresses required to separate the surfaces were determined. Self-welding was observed only at temperatures of 1050$sup 0$F and above, with the breakaway force being less than 5 ksi. (DLC)
Date: January 1, 1975
Creator: Chang, J. Y.; Flagella, P. N. & Schrock, S. L.
Partner: UNT Libraries Government Documents Department

Measurements of Backsheet Moisture Permeation and Encapsulant-Substrate Adhesion: Preprint

Description: Presented at the 2001 NCPV Program Review Meeting: Measurements of backsheet moisture permeation and encapsulant-substrate adhesion. At the March 2001 NCPV workshop on ''Moisture Ingress and High-Voltage Isolation'', industry participants identified several properties associated with PV module durability that are critical for commercial success. These include interface conductivity, adhesion of encapsulants to substrate materials as a function of in-service exposure conditions, and moisture permeation through backsheet materials as a function of temperature. Electrical data is discussed in a companion paper; adhesion and water vapor transmission rate (WVTR) measurements are presented herein.
Date: October 1, 2001
Creator: Jorgensen, G.; Terwilliger, K.; Barber, G.; Kennedy, C. & McMahon, T.
Partner: UNT Libraries Government Documents Department

Real-time Bacterial Detection by Single Cell Based Sensors UsingSynchrotron FTIR Spectromicroscopy

Description: Microarrays of single macrophage cell based sensors weredeveloped and demonstrated for real time bacterium detection bysynchrotron FTIR microscopy. The cells were patterned on gold-SiO2substrates via a surface engineering technique by which the goldelectrodes were immobilized with fibronectin to mediate cell adhesion andthe silicon oxide background were passivated with PEG to resist proteinadsorption and cell adhesion. Cellular morphology and IR spectra ofsingle, double, and triple cells on gold electrodes exposed tolipopolysaccharide (LPS) of different concentrations were compared toreveal the detection capabilities of these biosensors. The single-cellbased sensors were found to generate the most significant IR wave numbervariation and thus provide the highest detection sensitivity. Changes inmorphology and IR spectrum for single cells exposed to LPS were found tobe time- and concentration-dependent and correlated with each other verywell. FTIR spectra from single cell arrays of gold electrodes withsurface area of 25 mu-m2, 100 mu-m2, and 400 mu-m2 were acquired usingboth synchrotron and conventional FTIR spectromicroscopes to study thesensitivity of detection. The results indicated that the developedsingle-cell platform can be used with conventional FTIRspectromicroscopy. This technique provides real-time, label-free, andrapid bacterial detection, and may allow for statistic and highthroughput analyses, and portability.
Date: August 10, 2005
Creator: Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Bertozzi,Carolyn & Zhang, Miqin
Partner: UNT Libraries Government Documents Department

Adhesion Strength Study of EVA Encapsulants on Glass Substrates

Description: An extensive peel-test study was conducted to investigate the various factors that may affect the adhesion strength of photovoltaic module encapsulants, primarily ethylene-vinyl acetate (EVA), on glass substrates of various laminates based on a common configuration of glass/encapsulant/backfoil. The results show that"pure" or"absolute" adhesion strength of EVA-to-glass was very difficult to obtain because of tensile deformation of the soft, semi-elastic EVA layer upon pulling. A mechanically"strong enough" backing foil on the EVA was critical to achieving the"apparent" adhesion strength. Peel test method with a 90-degree-pull yielded similar results to a 180-degree-pull. The 90-degree-pull method better revealed the four stages of delamination failure of the EVA/backfoil layers. The adhesion strength is affected by a number of factors, which include EVA type, formulation, backfoil type and manufacturing source, glass type, and surface priming treatment on the glass surface or on the backfoil. Effects of the glass-cleaning method and surface texture are not obvious. Direct priming treatments used in the work did not improve, or even worsened, the adhesion. Aging of EVA by storage over~5 years reduced notably the adhesion strength. Lower adhesion strengths were observed for the blank (unformulated) EVA and non-EVA copolymers, such as poly(ethylene-co-methacrylate) (PEMA) or poly(ethylene-co-butylacrylate) (PEBA). Their adhesion strengths increased if the copolymers were cross-linked. Transparent fluoropolymer superstrates such as TefzelTM and DureflexTM films used for thin-film PV modules showed low adhesion strengths to the EVA at a level of~2 N/mm.
Date: May 1, 2003
Creator: Pern, F. J. & Glick, S. H.
Partner: UNT Libraries Government Documents Department

Reliability of materials in MEMS : residual stress and adhesion in a micro power generation system.

Description: The reliability of thin film systems is important to the continued development of microelectronic and micro-electro-mechanical systems (MEMS). The reliability of these systems is often tied to the ability of the films to remain adhered to its substrate. By measuring the amount of energy to separate the film from the substrate, researchers can predicts film lifetimes. Recent work has resulted in several different testing techniques to measure this energy including spontaneous buckling, indentation induced delamination and four point bending. This report focuses on developing quantifiable adhesion measurements for multiple thin film systems used in MEMS and other thin film systems of interest to Sandia programs. First, methods of accurately assessing interfacial toughness using stressed overlayer methods are demonstrated using both the W/Si and Au/Si systems. For systems where fracture only occurs along the interface, such as Au/Si, the calculated fracture energies between different tests are identical if the energy put into the system is kept near the needed strain energy to cause delamination. When the energy in the system is greater than needed to cause delamination, calculated adhesion energies can increase by a factor of three due to plastic deformation. Dependence of calculated adhesion energies on applied energy in the system was also shown when comparisons of four point bending and stressed overlayer test methods were completed on Pt/Si systems. The fracture energies of Pt/Ti/SiO{sub 2} were studied using four-point bending and compressive overlayers. Varying the thickness of the Ti film from 2 to 17 nm in a Pt/Ti/SiO{sub 2} system, both test methods showed an increase of adhesion energy until the nominal Ti thickness was 12nm. Then the adhesion energy began to decrease. While the trends in toughness are similar, the magnitude of the toughness values measured between the test methods is not the same, demonstrating the difficulty in ...
Date: September 1, 2007
Creator: Moody, Neville Reid; Kennedy, Marian S. (Washington State University, Pullman, WA) & Bahr, David F. (Washington State University, Pullman, WA)
Partner: UNT Libraries Government Documents Department

Adhesion and Surface Energy Profiles of Large-area Atomic Layers of Two-dimensional MoS2 on Rigid Substrates by Facile Methods

Description: Two-dimensional (2D) transition metal dichalcogenides (TMDs) show great potential for the future electronics, optoelectronics and energy applications. But, the studies unveiling their interactions with the host substrates are sparse and limits their practical use for real device applications. We report the facile nano-scratch method to determine the adhesion energy of the wafer scale MoS2 atomic layers attached to the SiO2/Si and sapphire substrates. The practical adhesion energy of monolayer MoS2 on the SiO2/Si substrate is 7.78 J/m2. The practical adhesion energy was found to be an increasing function of the MoS2 thickness. Unlike SiO2/Si substrates, MoS2 films grown on the sapphire possess higher bonding energy, which is attributed to the defect-free growth and less number of grain boundaries, as well as less stress and strain stored at the interface owing to the similarity of Thermal Expansion Coefficient (TEC) between MoS2 films and sapphire substrate. Furthermore, we calculated the surface free energy of 2D MoS2 by the facile contact angle measurements and Neumann model fitting. A surface free energy ~85.3 mJ/m2 in few layers thick MoS2 manifests the hydrophilic nature of 2D MoS2. The high surface energy of MoS2 helps explain the good bonding strength at MoS2/substrate interface. This simple adhesion energy and surface energy measurement methodology could further apply to other TMDs for their widespread use.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2016
Creator: Wu, Min
Partner: UNT Libraries