959 Matching Results

Search Results

Advanced search parameters have been applied.

Forecast of Standard Atomic Weights for the Mononuclidic Elements – 2011

Description: In this short report, I will provide an early warning about potential changes to the standard atomic weight values for the twenty mononuclidic and the so-called pseudo-mononuclidic ({sup 232}Th and {sup 231}Pa) chemical elements due to the estimated changes in the mass values to be published in the next Atomic Mass Tables within the next two years. There have been many new measurements of atomic masses, since the last published Atomic Mass Table. The Atomic Mass Data Center has released an unpublished version of the present status of the atomic mass values as a private communication. We can not update the Standard Atomic Weight Table at this time based on these unpublished values but we can anticipate how many changes are probably going to be expected in the next few years on the basis of the forthcoming publication of the Atomic Mass Table. I will briefly discuss the procedures that the Atomic Weights Commission used in deriving the recommended Standard Atomic Weight values and their uncertainties from the atomic mass values. I will also discuss some concern raised about a proposed change in the definition of the mole. The definition of the mole is now connected directly to the mass of a {sup 12}C isotope (which is defined as 12 exactly) and to the kilogram. A change in the definition of the mole will probably impact the mass of {sup 12}C.
Date: July 27, 2011
Creator: Holden, N.E.; Holden, N. & Holden,N.E.
Partner: UNT Libraries Government Documents Department

Universal correlations of nuclear observables and the structure of exotic nuclei

Description: Despite the apparent complexity of nuclear structural evolution, recent work has shown a remarkable underlying simplicity that is unexpected, global, and which leads to new signatures for structure based on the easiest-to-obtain data. As such they will be extremely valuable for use in the experiments with low intensity radioactive beams. Beautiful correlations based either on extrinsic variables such as N{sub p}N{sub n} or the P-factor or correlations between collective observables themselves have been discovered. Examples to be discussed include a tri-partite classification of structural evolution, leading to a new paradigm that discloses certain specific classes of nuclei, universal trajectories for B(E2: w{sub 1}{sup +} {r_arrow} 0{sub 1}{sup +}) values and their use in extracting hexadecapole deformations from this observable alone, the use of these B(E2) values to identify shell gaps and magic numbers in exotic nuclei, the relationship of {beta} and {gamma} deformations, and single nucleon separation energies. Predictions for nuclei far off stability by interpolation will also be discussed.
Date: Autumn 1996
Creator: Casten, R. F. & Zamfir, N. V.
Partner: UNT Libraries Government Documents Department

Modelling crystal-field interaction for f-elements in LaCl{sub 3}

Description: The results of crystal field calculations in the framework of exchange charge model (ECM) are reported for trivalent lanthanide and actinide ions doped into LaCl{sub 3}. Whereas the scalar strength of the model crystal field parameters are consistent with that previously determined by fitting the experimental data, the sign of the second-order parameter is found to be negative, in contrast to previous reports. The contribution from long-range electrostatic interactions exceeds that from the nearest neighboring ligands and leads to the negative sign of the second-order crystal field parameter. Other interaction mechanisms including overlap, covalence, and charge exchange are less important to the second order parameter, but dominate the fourth-and sixth-order parameters. This work provides a consistent interpretation of the previously controversial experimental results for both lanthanide and actinide ions in this classical host.
Date: September 1, 1997
Creator: Zhorin, V.V. & Liu, G.K.
Partner: UNT Libraries Government Documents Department

Measured Delayed Neutron Spectra from the Fission of U-235 and Np-237

Description: Texas A&M University, in collaboration with Oak Ridge National Laboratory / the Japan Atomic Energy Research Institute, have been actively studying the delayed neutron emission characteristics of the higher actinide isotopes for several years. 1-3 Recently, a proton recoil detector system was designed, built, and characterized for use in measuring delayed neutron energy spectra following neutron induced fission. The system has been used to measure aggregate delayed neutron energy spectra from neutron induced fission of U-235 and Np-237. These spectra have also been compared to that calculated using individual precursor P, values, yields, and spectra from the ENDF/B-VI file. A proton recoil detector array consisting of three LND Model 28305 high- -pressure proton recoil detectors has been constructed at the Texas A&M University Nuclear Science Center. The array was characterized using several neutron and gamma- ray sources to check for efficiency, gamma-ray response, and reliability of the unfolding techniques. Resultant measured proton recoil distributions were unfolded using a modified version of the spectrum unfolding code PSNS (the new code was renamed SAC). SAC used response functions calculated using MCNP 4A. This feature allowed the inclusion of several inches of lead between the detector and the source to decrease the detector's sensitivity to gamma-rays, while appropriately accounting for the effect on the transmitted neutron spectrum. Following proper calibration of the array, highly-purified sources of U-235 were irradiated in the Nuclear Science Center Reactor (NSCR) at a power of 1 MW for 200
Date: November 15, 1998
Creator: Charlton, W.S.; Comfort, C.; Parish, T.A. & Raman, S.
Partner: UNT Libraries Government Documents Department

Determining (n,f) cross sections for actinide nuclei indirectly: An examination of the Surrogate Ratio Method

Description: The validity of the Surrogate Ratio method for determining (n,f) cross sections for actinide nuclei is examined. This method relates the ratio of two compound-nucleus reaction cross sections to a ratio of coincidence events from two measurements in which the same compound nuclei are formed via a direct reaction. With certain assumptions, the method allows one of the cross sections to be inferred if the other is known. We develop a nuclear reaction-model simulation to investigate whether the assumptions underlying the Ratio approach are valid and employ these simulations to assess whether the cross sections obtained indirectly by applying a Ratio analysis agree with the expected results. In particular, we simulate Surrogate experiments that allow us to determine fission cross sections for selected actinide nuclei. The nuclei studied, {sup 233}U and {sup 235}U, are very similar to those considered in recent Surrogate experiments. We find that in favorable cases the Ratio method provides useful estimates of the desired cross sections, and we discuss some of the limitations of the approach.
Date: May 22, 2006
Creator: Escher, J E & Dietrich, F S
Partner: UNT Libraries Government Documents Department

Benchmarking the External Surrogate Ratio Method using the (alpha,alpha' f) reaction at STARS

Description: We measured the ratio of the fission probabilities of {sup 234}U* relative to {sup 236}U* formed via an ({alpha},{alpha}{prime}) direct reactions using the STARS array at the 88-inch cyclotron at the Lawrence Berkeley National Laboratory. This ratio has a shape similar to the ratio of neutron capture probabilities from {sup 233}U(n; f) and {sup 235}U(n; f), indicating the alpha reactions likely formed a compound nucleus. This result indicates that the ratios of fission exit channel probabilities for two actinide nuclei populated via ({alpha}, {alpha}{prime}) can be used to determine an unknown fission cross section relative to a known one. The validity of the External Surrogate Ratio Method (ESRM) is tested and the results support the conclusions of Burke et al. [1].
Date: January 9, 2008
Creator: Lesher, S R; Bernstein, L A; Ai, H; Beausang, C W; Bleuel, D; Burke, J T et al.
Partner: UNT Libraries Government Documents Department

New Results on Fission Cross Sections in Actinide Nuclei using the Surrogate Ratio Method and on Conversion Coefficients in Triaxial Strongly Deformed Bands in 167Lu from ICE Ball and Gammasphere

Description: The surrogate ratio technique is described. New results for neutron induced fission cross sections on actinide nuclei, obtained using this technique are presented. The results benchmark the surrogate ratio technique and indicate that the method is accurate to within 5% over a wide energy range. New results for internal conversion coefficients in triaxial strongly deformed bands in {sup 167}Lu are also presented.
Date: January 30, 2007
Creator: Beausang, C; Lesher, S; Burke, J; Bernstein, L; Phair, L; Ai, H et al.
Partner: UNT Libraries Government Documents Department

Final report of the International Nuclear Energy Research Initiative OSMOSE project (FY01-FY04).

Description: The need for better nuclear data has been stressed by various organizations throughout the world, and results of studies have been published which demonstrate that current data are inadequate for designing the projects under consideration [1] [2]. In particular, a Working Party of the OECD has been concerned with identifying these needs [3] and has produced a detailed High Priority Request List for Nuclear Data. The French Atomic Energy Commissariat (CEA) has also recognized the need for better data and launched an ambitious program aimed at measuring the integral absorption rate parameters at the CEA-Cadarache Research Center. A complete analytical program is associated with the experimental program and aims at understanding and resolving potential discrepancies between calculated and measured values. The final objective of the program is to reduce the uncertainties in predictive capabilities to a level acceptable to core designers and government regulators. Argonne National Laboratory has expertise in these areas. In the past, ANL teams have developed very accurate experimental techniques and strongly enhanced the development of several French experimental and analytical programs, and have contributed to the computational tools used at CEA-Cadarache. CEA recognized the expertise that ANL has in these areas and was interested in collaborating with ANL in the experimental design, measurements, and analysis tasks of the OSMOSE (Oscillation in Minerve of Isotopes in Eupraxic Spectra) program. The development and execution of the first phase of the OSMOSE program within the DOE I-NERI Program was a resounding success. Both parties saw improved performance in the conduct of the program because of the contribution from both parties. The collaboration included several key aspects: (1) DOE supplied specific minor actinide isotopes to CEA that were not easily obtainable in France, (2) ANL staff participated and supported the experimental program, (3) ANL and CEA personnel performed analysis for ...
Date: February 25, 2005
Creator: Klann, R. T.; Perret, G.; Hudelot, J. P.; Drin, N.; Lee, J. & Cao, Y.
Partner: UNT Libraries Government Documents Department

FY2010 Annual Report for the Actinide Isomer Detection Project

Description: This project seeks to identify a new signature for actinide element detection in active interrogation. This technique works by exciting and identifying long-lived nuclear excited states (isomers) in the actinide isotopes and/or primary fission products. Observation of isomers in the fission products will provide a signature for fissile material. For the actinide isomers, the decay time and energy of the isomeric state is unique to a particular isotope, providing an unambiguous signature for Special Nuclear Materials (SNM). Future work will include a follow-up measurement scheduled for December 2010 at LBNL. Lessons learned from the July 2010 measurements will be incorporated into these new measurements. Analysis of both the July and December experiments will be completed in a few months. A research paper to be submitted to a peer-reviewed journal will be drafted if the conclusions from the measurements warrant publication.
Date: January 1, 2011
Creator: Warren, Glen A.; Francy, Christopher J.; Ressler, Jennifer J.; Erikson, Luke E.; Miller, Erin A. & Hatarik, R.
Partner: UNT Libraries Government Documents Department

SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

Description: We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.
Date: December 20, 2010
Creator: Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M & Pei, J
Partner: UNT Libraries Government Documents Department

RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH

Description: A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are split between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead. Multiple vacuum box locations may be set-up to supply several ICP-MS ...
Date: May 27, 2009
Creator: Maxwell, S. & Jones, V.
Partner: UNT Libraries Government Documents Department

AFCI Fuel Irradiation Test Plan, Test Specimens AFC-1Æ and AFC-1F

Description: The U. S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposition and the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository (DOE, 2003). One important component of the technology development is actinide-bearing transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. There are little irradiation performance data available on non-fertile fuel forms, which would maximize the destruction rate of plutonium, and low-fertile (i.e., uranium-bearing) fuel forms, which would support a sustainable nuclear energy option. Initial scoping level irradiation tests on a variety of candidate fuel forms are needed to establish a transmutation fuel form design and evaluate deployment of transmutation fuels.
Date: November 1, 2003
Creator: Crawford, D. C.; Hayes, S. L.; Hilton, B. A.; Meyer, M. K.; Ambrosek, R. G.; Chang, G. S. et al.
Partner: UNT Libraries Government Documents Department

Consistent Data Assimilation of Actinide Isotopes: 235U and 239Pu

Description: In this annual report we illustrate the methodology of the consistent data assimilation that allows to use the information coming from integral experiments for improving the basic nuclear parameters used in cross section evaluation. A series of integral experiments were analyzed using the EMPIRE evaluated files for {sup 235}U, {sup 238}U, and {sup 239}Pu. Inmost cases the results have shown quite large worse results with respect to the corresponding existing evaluations available for ENDF/B-VII. The observed discrepancies between calculated and experimental results were used in conjunction with the computed sensitivity coefficients and covariance matrix for nuclear parameters in a consistent data assimilation. Only the GODIVA and JEZEBEL experimental results were used, in order to exploit information relative to the isotope of interest that are, in this particular case: {sup 235}U and {sup 239}Pu. The results obtained by the consistent data assimilation indicate that with reasonable modifications (mostly within the initial standard deviation) it is possible to eliminate the original large discrepancies on the K{sub eff} of the two critical configurations. However, some residual discrepancy remains for a few fission spectral indices that are, most likely, to be attributed to the detector cross sections.
Date: September 1, 2011
Creator: Palmiottti, G.; Hiruta, H. & Salvatores, M.
Partner: UNT Libraries Government Documents Department

Definition of Small Gram Quantity Contents for Type B Radioactive Material Transportation Packages: Activity-Based Content Limitations

Description: Since the 1960's, the Department of Transportation Specification (DOT Spec) 6M packages have been used extensively for transportation of Type B quantities of radioactive materials between Department of Energy (DOE) facilities, laboratories, and productions sites. However, due to the advancement of packaging technology, the aging of the 6M packages, and variability in the quality of the packages, the DOT implemented a phased elimination of the 6M specification packages (and other DOT Spec packages) in favor of packages certified to meet federal performance requirements. DOT issued the final rule in the Federal Register on October 1, 2004 requiring that use of the DOT Specification 6M be discontinued as of October 1, 2008. A main driver for the change was the fact that the 6M specification packagings were not supported by a Safety Analysis Report for Packaging (SARP) that was compliant with Title 10 of the Code of Federal Regulations part 71 (10 CFR 71). Therefore, materials that would have historically been shipped in 6M packages are being identified as contents in Type B (and sometimes Type A fissile) package applications and addenda that are to be certified under the requirements of 10 CFR 71. The requirements in 10 CFR 71 include that the Safety Analysis Report for Packaging (SARP) must identify the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents (10 CFR 71.33(b)(1) and 10 CFR 71.33(b)(2)), and that the application (i.e., SARP submittal or SARP addendum) demonstrates that the external dose rate (due to the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents) on the surface of the packaging (i.e., package and contents) not exceed 200 mrem/hr (10 CFR 71.35(a), 10 CFR 71.47(a)). It has been proposed that a 'Small Gram Quantity' of radioactive material be defined, such that, when loaded in a transportation ...
Date: October 27, 2010
Creator: Sitaraman, S; Kim, S; Biswas, D; Hafner, R & Anderson, B
Partner: UNT Libraries Government Documents Department

Elemental and Isotopic Analysis of Uranium Oxide an NIST Glass Standards by FEMTOSECOND-LA-ICP-MIC-MS

Description: The objective of this work was to test and demonstrate the analytical figures of merit of a femtosecond-laser ablation (fs-LA) system coupled with an inductively coupled plasma-multi-ion collector-mass spectrometer (ICP-MIC-MS). The mobile fs-LA sampling system was designed and assembled at Ames Laboratory and shipped to Oak Ridge National Laboratory (ORNL), where it was integrated with an ICP-MIC-MS. The test period of the integrated systems was February 2-6, 2009. Spatially-resolved analysis of particulate samples is accomplished by 100-shot laser ablation using a fs-pulsewidth laser and monitoring selected isotopes in the resulting ICP-MS transient signal. The capability of performing high sensitivity, spatially resolved, isotopic analyses with high accuracy and precision and with virtually no sample preparation makes fs-LA-ICP-MIC-MS valuable for the measurement of actinide isotopes at low concentrations in very small samples for nonproliferation purposes. Femtosecond-LA has been shown to generate particles from the sample that are more representative of the bulk composition, thereby minimizing weaknesses encountered in previous work using nanosecond-LA (ns-LA). The improvement of fs- over ns-LA sampling arises from the different mechanisms for transfer of energy into the sample in these two laser pulse-length regimes. The shorter duration fs-LA pulses induce less heating and cause less damage to the sample than the longer ns pulses. This results in better stoichiometric sampling (i.e., a closer correlation between the composition of the ablated particles and that of the original solid sample), which improves accuracy for both intra- and inter-elemental analysis. The primary samples analyzed in this work are (a) solid uranium oxide powdered samples having different {sup 235}U to {sup 238}U concentration ratios, and (b) glass reference materials (NIST 610, 612, 614, and 616). Solid uranium oxide samples containing {sup 235}U in depleted, natural, and enriched abundances were analyzed as particle aggregates immobilized in a collodion substrate. The uranium oxide samples ...
Date: June 1, 2009
Creator: Ebert, Chris; Zamzow, Daniel S.; McBay, Eddie H.; Bostick, Debra A.; Bajic, Stanley J.; Baldwin, David P. et al.
Partner: UNT Libraries Government Documents Department

Octupole effects at super and normal deformation.

Description: This presentation deals with recent results on the onset of octupole collectivity in superdeformed nuclei of the A {approx} 190 and A {approx} 150 regions as well as in actinide nuclei at normal deformation. It is shown that most of the properties of these negative parity sequences can be understood in terms of Random Phase Approximation (RPA) calculations, although the observations in some Pu isotopes continue to be a challenge to interpret.
Date: June 6, 2002
Creator: Janssens, R. V. F.
Partner: UNT Libraries Government Documents Department

RAPID METHOD FOR PLUTONIUM, AMERICIUM AND CURIUM IN VERY LARGE SOIL SAMPLES

Description: The analysis of actinides in environmental soil and sediment samples is very important for environmental monitoring. There is a need to measure actinide isotopes with very low detection limits. A new, rapid actinide separation method has been developed and implemented that allows the measurement of plutonium, americium and curium isotopes in very large soil samples (100-200 g) with high chemical recoveries and effective removal of matrix interferences. This method uses stacked TEVA Resin{reg_sign}, TRU Resin{reg_sign} and DGA-Resin{reg_sign} cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), americium (Am), and curium (Cm) using a single multistage column combined with alpha spectrometry. The method combines an acid leach step and innovative matrix removal using cerium fluoride precipitation to remove the difficult soil matrix. This method is unique in that it provides high tracer recoveries and effective removal of interferences with small extraction chromatography columns instead of large ion exchange resin columns that generate large amounts of acid waste. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.
Date: January 8, 2007
Creator: Maxwell, S
Partner: UNT Libraries Government Documents Department

NEW METHOD FOR DETERMINATION OF ACTINIDES AND STRONTIUM IN ANIMAL TISSUE

Description: The analysis of actinides in animal tissue samples is very important for environmental monitoring. There is a need to measure actinide isotopes with very low detection limits in animal tissue samples, including fish, deer, hogs, beef and shellfish. A new, rapid actinide separation method has been developed and implemented that allows the measurement of plutonium, neptunium, uranium, americium, curium and strontium isotopes in large animal tissue samples (100-200 g) with high chemical recoveries and effective removal of matrix interferences. This method uses stacked TEVA Resin{reg_sign}, TRU Resin{reg_sign} and DGA-Resin{reg_sign} cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), neptunium (Np), uranium (U), americium (Am), and curium (Cm) using a single multi-stage column combined with alpha spectrometry. Sr-90 is collected on Sr Resin{reg_sign} from Eichrom Technologies (Darien, IL, USA). After acid digestion and furnace heating of the animal tissue samples, the actinides and Sr-89/90 are separated using column extraction chromatography. This method has been shown to be effective over a wide range of animal tissue matrices. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.
Date: May 7, 2007
Creator: Maxwell, S; Jay Hutchison, J & Don Faison, D
Partner: UNT Libraries Government Documents Department

Anomalies of Nuclear Criticality, Revision 6

Description: This report is revision 6 of the Anomalies of Nuclear Criticality. This report is required reading for the training of criticality professionals in many organizations both nationally and internationally. This report describes many different classes of nuclear criticality anomalies that are different than expected.
Date: February 19, 2010
Creator: Clayton, E. D.; Prichard, Andrew W.; Durst, Bonita E.; Erickson, David & Puigh, Raymond J.
Partner: UNT Libraries Government Documents Department

Status of measured neutron cross sections of transactinium isotopes for thermal reactors

Description: Experimentally determined neutron cross sections, resonance parameters, and the average number of neutrons per fission for neutron-induced fission of actinide nuclides in the production chains associated with thermal and near- thermal reactors are summarized and compared with user requests for experimental data. The primary fertile and fissile isotopes $sup 232$Th, $sup 233$U, $sup 235$U, $sup 238$U, and $sup 239$Pu are excluded from this survey. Integral data, i.e., spectrum-averaged thermal cross sections and resonance integrals, are included, but the emphasis is placed on energy-dependent differential cross sections because of their general utility with any specified neutron energy spectrum. Included with the data summaries are an extensive survey of the literature through August 1975, brief descriptions of measurements known to be in progress or firmly planned for the immediate future, and recommendations for needed measurements. (3 figures, 5 tables) (auth)
Date: January 1, 1975
Creator: Benjamin, R.W.
Partner: UNT Libraries Government Documents Department

Ultra-Sensitive Elemental and Isotope Measurements with Compact Plasma Source Cavity Ring-Down Spectroscopy (CPS-CRDS)

Description: The proposed research is to develop a new class of instruments for actinide isotopes and hazardous element analysis through coupling highly sensitive cavity ring-down spectroscopy to a compact microwave plasma source. The research work will combine advantages of CRDS measurement with a low power, low flow rate, tubing-type microwave plasma source to reach breakthrough sensitivity for elemental analysis and unique capability of isotope measurement. The project has several primary goals: (1) Explore the feasibility of marrying CRDS with a new microwave plasma source; (2) Provide quantitative evaluation of CMP-CRDS for ultratrace elemental and actinide isotope analysis; (3) Approach a breakthrough detection limit of ca. 10{sup -13} g/ml or so, which are orders of magnitude better than currently available best values; (4) Demonstrate the capability of CMP-CRDS technology for isobaric measurements, such as {sup 238}U and {sup 238}Pu isotopes. (5) Design and assemble the first compact, field portable CMP-CRDS instrument with a high-resolution diode laser for DOE/EM on-site demonstration. With all these unique capabilities and sensitivities, we expect CMP-CRDS will bring a revolutionary change in instrument design and development, and will have great impact and play critical roles in supporting DOE's missions in environmental remediation, environmental emission control, waste management and characterization, and decontamination and decommissioning. The ultimate goals of the proposed project are to contribute to environmental management activities that would decrease risk for the public and workers, increase worker productivity with on-site analysis, and tremendously reduce DOE/EM operating costs.
Date: June 1, 2005
Creator: Duan, Yixiang; Wang, Chuji & Winstead, Christopher B.
Partner: UNT Libraries Government Documents Department

U.S. Plans for the Next Fast Reactor Transmutation Fuels Irradiation Test

Description: The U.S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposal and the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is actinide-bearing transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. Metallic alloy and oxide fuel forms are being developed as the near term options for fast reactor implementation.
Date: September 1, 2007
Creator: Hilton, B. A.
Partner: UNT Libraries Government Documents Department

AN EVALUATION OF POTENTIAL LINER MATERIALS FOR ELIMINATING FCCI IN IRRADIATED METALLIC NUCLEAR FUEL ELEMENTS

Description: Metallic nuclear fuels are being looked at as part of the Global Nuclear Energy Program for transmuting longlive transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. In order to optimize the performance of these fuels, the concept of using liners to eliminate the fuel/cladding chemical interactions that can occur during irradiation of a fuel element has been investigated. The potential liner materials Zr and V have been tested using solid-solid diffusion couples, consisting of liner materials butted against fuel alloys and against cladding materials. The couples were annealed at the relatively high temperature of 700°C. This temperature would be the absolute maximum temperature present at the fuel/cladding interface for a fuel element in-reactor. Analysis was performed using a scanning electron microscope equipped with energy-dispersive and wavelengthdispersive spectrometers (SEM/EDS/WDS) to evaluate any developed diffusion structures. At 700°C, minimal interaction was observed between the metallic fuels and either Zr or V. Similarly, limited interaction was observed between the Zr and V and the cladding materials. The best performing liner material appeared to be the V, based on amounts of interaction.
Date: September 1, 2007
Creator: Keiser, D. D. & Cole, J. I.
Partner: UNT Libraries Government Documents Department

Ultra-Sensitive Elemental and Isotope Measurements with Compact Plasma Source Cavity Ring-Down Spectroscopy

Description: The proposed research is to develop a new class of instruments for actinide isotopes and hazardous element analysis through coupling highly sensitive cavity ring-down spectroscopy to a compact microwave plasma source. The research work will combine advantages of CRDS measurement with a low power, low flow rate, tubing-type microwave plasma source to reach breakthrough sensitivity for elemental analysis and unique capability of isotope measurement. The project has several primary goals: (1) Explore the feasibility of marrying CRDS with a new microwave plasma source; (2) Provide quantitative evaluation of CMP-CRDS for ultra-trace elemental and actinide isotope analysis; (3) Approach a breakthrough detection limit of ca. 10-13 g/ml or so, which are orders of magnitude better than currently available best values; (4) Demonstrate the capability of CMP-CRD S technology for isobaric measurements, such as 238U and 238Pu isotopes. (5) Design and assemble the first compact, field portable CMP-CRDS instrument with a high-resolution diode laser for DOE/EM on-site demonstration. With all these unique capabilities and sensitivities, we expect CMPCRDS will bring a revolutionary change in instrument design and development, and will have great impact and play critical roles in supporting DOE's missions in environmental remediation, environmental emission control, waste management and characterization, and decontamination and decommissioning. The ultimate goals of the proposed project are to contribute to environmental management activities that would decrease risk for the public and workers, increase worker productivity with on-site analysis, and tremendously reduce DOE/EM operating costs.
Date: December 1, 2004
Creator: Wang, Chuji
Partner: UNT Libraries Government Documents Department