267 Matching Results

Search Results

Advanced search parameters have been applied.

Spectrophotometric and Calorimetric Studies of Np(V) Complexation with Acetate at Variable Temperatures (T = 283 - 343 K)

Description: Spectrophotometric titrations were performed to identify the Np(V)/acetate complex and determine the equilibrium constants at variable temperatures (T = 283 - 343 K) and at the ionic strength of 1.05 mol {center_dot} kg{sup -1}. The enthalpy of complexation at corresponding temperatures was determined by microcalorimetric titrations. Results show that the complexation of Np(V) with acetate is weak but strengthened as the temperature is increased. The complexation is endothermic and is entropy-driven. The enhancement of the complexation at elevated temperatures is primarily due to the increasingly larger entropy gain when the solvent molecules are released from the highly-ordered solvation spheres of NpO{sub 2}{sup +} and acetate to the bulk solvent where the degree of disorder is higher at higher temperatures.
Date: December 21, 2009
Creator: Rao, Linfeng; Tian, Guoxin; Srinivasan, Thandankorai G.; Zanonato, PierLuigi & Di Bernardo, Plinio
Partner: UNT Libraries Government Documents Department

Feedbacks between hydrological heterogeneity and bioremediation induced biogeochemical transformations

Description: For guiding optimal design and interpretation of in-situ treatments that strongly perturb subsurface systems, knowledge about the spatial and temporal patterns of mass transport and reaction intensities are important. Here, a procedure was developed and applied to time-lapse concentrations of a conservative tracer (bromide), an injected amendment (acetate) and reactive species (iron(II), uranium(VI) and sulfate) associated with two field scale biostimulation experiments, which were conducted successively at the same field location over two years. The procedure is based on a temporal moment analysis approach that relies on a streamtube approximation. The study shows that biostimulated reactions can be considerably influenced by subsurface hydrological and geochemical heterogeneities: the delivery of bromide and acetate and the intensity of the sulfate reduction is interpreted to be predominantly driven by the hydrological heterogeneity, while the intensity of the iron reduction is interpreted to be primarily controlled by the geochemical heterogeneity. The intensity of the uranium(VI) reduction appears to be impacted by both the hydrological and geochemical heterogeneity. Finally, the study documents the existence of feedbacks between hydrological heterogeneity and remediation-induced biogeochemical transformations at the field scale, particularly the development of precipitates that may cause clogging and flow rerouting.
Date: April 15, 2009
Creator: Englert, A.; Hubbard, S.S.; Williams, K.H.; Li, L. & Steefel, C.I.
Partner: UNT Libraries Government Documents Department

[Acetyl-CoA cleavage and synthesis in methanogens]. Progress report, September 1994--August 1997

Description: The acetyl-CoA decarbonylase synthase (ACDS) complex has been detected in a variety of methanogens including species of Methanosarcina, Methanothrix (i.e., Methanosaeta), and Methanococcus. The multienzyme complex from Methanosarcina barkeri is composed of five different subunits, possibly arranged in an {alpha}{sub 6}{beta}{sub 6}{gamma}{sub 6}{delta}{sub 6}{var_epsilon}{sub 6} structure with the individual subunits of molecular masses (kDa) of 89, 60, 50, 48, and 20, respectively. This progress report summarizes the work from the past 21 months on studies directed toward understanding how the ACDS complex functions in the physiology of acetate-cleaving, and acetate-synthesizing methanogens.
Date: November 1, 1998
Partner: UNT Libraries Government Documents Department

Rapid, automated gas chromatographic detection of organic compounds in ultra-pure water

Description: An automated gas chromatography was used to analyze water samples contaminated with trace (parts-per-billion) concentrations of organic analytes. A custom interface introduced the liquid sample to the chromatography. This was followed by rapid chromatographic analysis. Characteristics of the analysis include response times less than one minute and automated data processing. Analytes were chosen based on their known presence in the recycle water streams of semiconductor manufacturers and their potential to reduce process yield. These include acetone, isopropanol, butyl acetate, ethyl benzene, p-xylene, methyl ethyl ketone and 2-ethoxy ethyl acetate. Detection limits below 20 ppb were demonstrated for all analytes and quantitative analysis with limited speciation was shown for multianalyte mixtures. Results are discussed with respect to the potential for on-line liquid process monitoring by this method.
Date: February 15, 2000
Partner: UNT Libraries Government Documents Department

Inelastic Neutron Scattering Study of Mn

Description: The authors report zero-field inelastic neutron scattering experiments on a 14-gram deuterated sample of Mn{sub 12}-Acetate consisting of a large number of identical spin-10 magnetic clusters. Their resolution enables them to see a series of peaks corresponding to transitions between the anisotropy levels within the spin-10 manifold. A fit to the spin Hamiltonian H = {minus}DS{sub z}{sup 2} + {mu}{sub B}B{center_dot}g{center_dot}S-BS{sub z}{sup 4} + C(S{sub +}{sup 4} + S{sub {minus}}{sup 4}) yields an anisotropy constant D = (0.54 {+-} 0.02) K and a fourth-order diagonal anisotropy coefficient B = (1.2 {+-} 0.1) x 10{sup {minus}3}K. Unlike EPR measurements, their experiments do not require a magnetic field and yield parameters that do not require knowledge of the g-value.
Date: November 9, 1998
Creator: Zhong, Y.; Sarachik, M.P.; Friedman, J.R.; Robinson, R.A.; Kelley, T.M.; Nakotte, H. et al.
Partner: UNT Libraries Government Documents Department

Fate of neptunium in an anaerobic, methanogenic microcosm.

Description: Neptunium is found predominantly as Np(IV) in reducing environments, but Np(V) in aerobic environments. However, currently it is not known how the interplay between biotic and abiotic processes affects Np redox speciation in the environment. In order to evaluate the effect of anaerobic microbial activity on the fate of Np in natural systems, Np(V) was added to a microcosminoculated with anaerobic sediments from a metal-contaminated fresh water lake. The consortium included metal-reducing, sulfate-reducing, and methanogenic microorganisms, and acetate was supplied as the only exogenous substrate. Addition of more than 10{sup {minus}5} M Np did not inhibit methane production. Total Np volubility in the active microcosm, as well as in sterilized control samples, decreased by nearly two orders of magnitude. A combination of analytical techniques, including VIS-NIR absorption spectroscopy and XANES, identified Np(IV) as the oxidation state associated with the sediments. The similar results from the active microcosm and the abiotic controls suggest that microbian y produced Mn(II/HI) and Fe(II) may serve as electron donors for Np reduction.
Date: December 21, 1998
Creator: Banaszak, J. E.
Partner: UNT Libraries Government Documents Department

Development of a biomarker for Geobacter activity and strain composition: Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI)

Description: Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.
Date: February 15, 2010
Creator: Wilkins, M.J.; Callister, S.J.; Miletto, M.; Williams, K.H.; Nicora, C.D.; Lovley, D.R. et al.
Partner: UNT Libraries Government Documents Department

Expression of acetate permease-like (apl) genes in subsurface communities of Geobacter species under fluctuating acetate concentrations

Description: The addition of acetate to uranium-contaminated aquifers in order to stimulate the growth and activity of Geobacter species that reduce uranium is a promising in situ bioremediation option. Optimizing this bioremediation strategy requires that sufficient acetate be added to promote Geobacter species growth. We hypothesized that under acetate-limiting conditions, subsurface Geobacter species would increase the expression of either putative acetate symporters genes (aplI and aplII). Acetate was added to a uranium-contaminated aquifer (Rifle, CO) in two continuous amendments separated by 5 days of groundwater flush to create changing acetate concentrations. While the expression of aplI in monitoring well D04 (high acetate) weakly correlated with the acetate concentration over time, the transcript levels for this gene were relatively constant in well D08 (low acetate). At the lowest acetate concentrations during the groundwater flush, the transcript levels of aplII were the highest. The expression of aplII decreased 2-10-fold upon acetate reintroduction. However, the overall instability of acetate concentrations throughout the experiment could not support a robust conclusion regarding the role of apl genes in response to acetate limitation under field conditions, in contrast to previous chemostat studies, suggesting that the function of a microbial community cannot be inferred based on lab experiments alone.
Date: March 1, 2010
Creator: Elifantz, H.; N'Guessan, L.A.; Mouser, P.J.; Williams, K H.; Wilkins, M J.; Risso, C. et al.
Partner: UNT Libraries Government Documents Department

Metabolic Flux Analysis of Shewanella spp. Reveals Evolutionary Robustness in Central Carbon Metabolism

Description: Shewanella spp. are a group of facultative anaerobic bacteria widely distributed in marine and fresh-water environments. In this study, we profiled the central metabolic fluxes of eight recently sequenced Shewanella species grown under the same condition in minimal med-ium with [3-13C] lactate. Although the tested Shewanella species had slightly different growth rates (0.23-0.29 h31) and produced different amounts of acetate and pyruvate during early exponential growth (pseudo-steady state), the relative intracellular metabolic flux distributions were remarkably similar. This result indicates that Shewanella species share similar regulation in regard to central carbon metabolic fluxes under steady growth conditions: the maintenance of metabolic robustness is not only evident in a single species under genetic perturbations (Fischer and Sauer, 2005; Nat Genet 37(6):636-640), but also observed through evolutionary related microbial species. This remarkable conservation of relative flux profiles through phylogenetic differences prompts us to introduce the concept of metabotype as an alternative scheme to classify microbial fluxomics. On the other hand, Shewanella spp. display flexibility in the relative flux profiles when switching their metabolism from consuming lactate to consuming pyruvate and acetate.
Date: August 19, 2009
Creator: Tang, Yinjie J.; Martin, Hector Garcia; Dehal, Paramvir S.; Deutschbauer, Adam; Llora, Xavier; Meadows, Adam et al.
Partner: UNT Libraries Government Documents Department

Phase Preference by Active, Acetate-Utilizing Bacteria at the Rifle, CO Integrated Field Research Challenge Site

Description: Previous experiments at the Rifle, Colorado Integrated Field Research Challenge (IFRC) site demonstrated that field-scale addition of acetate to groundwater reduced the ambient soluble uranium concentration. In this report, sediment samples collected before and after acetate field addition were used to assess the active microbes via {sup 13}C acetate stable isotope probing on 3 phases [coarse sand, fines (8-approximately 150 {micro}m), groundwater (0.2-8 {micro}m)] over a 24-day time frame. TRFLP results generally indicated a stronger signal in {sup 13}C-DNA in the 'fines' fraction compared to the sand and groundwater. Before the field-scale acetate addition, a Geobacter-like group primarily synthesized {sup 13}C-DNA in the groundwater phase, an alpha Proteobacterium primarily grew on the fines/sands, and an Acinetobacter sp. and Decholoromonas-like OTU utilized much of the {sup 13}C acetate in both groundwater and particle-associated phases. At the termination of the field-scale acetate addition, the Geobacter-like species was active on the solid phases rather than the groundwater, while the other bacterial groups had very reduced newly synthesized DNA signal. These findings will help to delineate the acetate utilization patterns of bacteria in the field and can lead to improved methods for stimulating distinct microbial populations in situ.
Date: February 21, 2011
Creator: Kerkhof, L.; Williams, K.H.; Long, P.E. & McGuinness, L.
Partner: UNT Libraries Government Documents Department

Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

Description: The impact of ammonium availability on microbial community structure and the physiological status and activity of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by as much as two orders of magnitude (<4 to 400 {micro}M) across the study site. Analysis of 16S rRNA gene sequences suggested that ammonium influenced the composition of the microbial community prior to acetate addition with Rhodoferax species predominating over Geobacter species at the site with the highest ammonium, and Dechloromonas species dominating at sites with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to the concentration of acetate that was delivered to each location rather than the amount of ammonium available in the groundwater. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium importer gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during in situ uranium reduction, and that the abundance of amtB transcripts was inversely correlated to ammonium levels across all sites examined. These results suggest that nifD and amtB expression by subsurface Geobacter species are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB expression appears to be a useful approach for monitoring the nitrogen-related physiological status of Geobacter species in subsurface environments during bioremediation. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes.
Date: April 1, 2009
Creator: Mouser, P.J.; N'Guessan, A.L.; Elifantz, H.; Holmes, D.E.; Williams, K.H.; Wilkins, M.J. et al.
Partner: UNT Libraries Government Documents Department

Influences of Organic Carbon Supply Rate on Uranium Bioreduction in Initially Oxidizing, Contaminated Sediment

Description: Remediation of uranium (U) contaminated sediments through in-situ stimulation of bioreduction to insoluble UO{sub 2} is a potential treatment strategy under active investigation. Previously, we found that newly reduced U(IV) can be reoxidized under reducing conditions sustained by a continuous supply of organic carbon (OC) because of residual reactive Fe(III) and enhanced U(VI) solubility through complexation with carbonate generated through OC oxidation. That finding motivated this investigation directed at identifying a range of OC supply rates that is optimal for establishing U bioreduction and immobilization in initially oxidizing sediments. The effects of OC supply rate, from 0 to 580 mmol OC (kg sediment){sup -1} year{sup -1}, and OC form (lactate and acetate) on U bioreduction were tested in flow-through columns containing U-contaminated sediments. An intermediate supply rate on the order of 150 mmol OC (kg sediment){sup -1} year{sup -1} was determined to be most effective at immobilizing U. At lower OC supply rates, U bioreduction was not achieved, and U(VI) solubility was enhanced by complexation with carbonate (from OC oxidation). At the highest OC supply rate, resulting highly carbonate-enriched solutions also supported elevated levels of U(VI), even though strongly reducing conditions were established. Lactate and acetate were found to have very similar geochemical impacts on effluent U concentrations (and other measured chemical species), when compared at equivalent OC supply rates. While the catalysts of U(VI) reduction to U(IV) are presumably bacteria, the composition of the bacterial community, the Fe reducing community, and the sulfate reducing community had no direct relationship with effluent U concentrations. The OC supply rate has competing effects of driving reduction of U(VI) to low solubility U(IV) solids, as well as causing formation of highly soluble U(VI)-carbonato complexes. These offsetting influences will require careful control of OC supply rates in order to optimize bioreduction-based U stabilization.
Date: June 10, 2008
Creator: Tokunaga, Tetsu K.; Wan, Jiamin; Kim, Yongman; Daly, Rebecca A.; Brodie, Eoin L.; Hazen, Terry C. et al.
Partner: UNT Libraries Government Documents Department

Density Distributions in TATB Prepared by Various Methods

Description: The density distribution of two legacy types of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) particles were compared with TATB synthesized by new routes and recrystallized in several different solvents using a density gradient technique. Legacy wet (WA) and dry aminated (DA) TATB crystalline aggregates gave average densities of 1.9157 and 1.9163 g/cc, respectively. Since the theoretical maximum density (TMD) for a perfect crystal is 1.937 g/cc, legacy TATB crystals averaged 99% of TMD or about 1% voids. TATB synthesized from phloroglucinol (P) had comparable particle size to legacy TATBs, but significantly lower density, 1.8340 g/cc. TATB synthesized from 3,5 dibromoanisole (BA) was very difficult to measure because it contained extremely fine particles, but had an average density of 1.8043 g/cc over a very broad range. Density distributions of TATB recrystallized from dimethylsulfoxide (DMSO), sulfolane, and an 80/20 mixture of DMSO with the ionic liquid 1-ethyl-3-methyl- imidazolium acetate (EMImOAc), with some exceptions, gave average densities comparable or better than the legacy TATBs.
Date: May 13, 2008
Creator: Hoffman, D M & Fontes, A T
Partner: UNT Libraries Government Documents Department

Synthesis and Properties of a New Explosive, 4-Amino-3,5-Dinitro-lH-Pyrazole (LLM-116)

Description: A novel synthesis of the title compound was achieved by direct amination using Vicarious Nucleophilic Substitution (VNS) methodology. Reaction of 1,1,1-trimethylhydrazinium iodide with 3,5-dinitropyrazole in DMSO produces 4-amino-3,s-dinitro-1H-pyrazole as a 1:1 crystal solvate with DMSO. Recrystallization from water yields the monohydrated crystal. Recrystallization of the monohydrate from butyl acetate yields the compound in pure form. Crystallographic data and results of small-scale safety tests are reported. These data indicate that LLM-116 is a promising candidate as an insensitive high explosive.
Date: May 22, 2001
Creator: Schmidt, R D; Lee, G S; Pagoria, P F; Mitchell, A R & Gilardi, R
Partner: UNT Libraries Government Documents Department

Degradation of Isotopic Lactate and Acetate

Description: A scheme of glucose degradation has been validated by the use of intermediates of known isotopic composition. In this scheme: glucose {yields} lactic acid {yields} CO{sub 2} (C-3,4) + acetic acid {yields} CO{sub 2} (C-2,5) + acetone {yields} iodoform (C-1,6) + acetate (C-1,6; 2,5), it was found that (a) in the oxidation of lactic acid, approximately 4.7% of the acetic acid was oxidized to CO{sub 2}; and (b) under the conditions prescribed, BaCO{sub 3} from the degradation of Ba acetate contained approximately 1.5% of the activity of the methyl group.
Date: February 24, 1948
Creator: Aronoff, S.; Haas, V.A. & Fries, B.A.
Partner: UNT Libraries Government Documents Department

In situ XANES study of the passive film formed on iron in borate buffer and in sodium acetate

Description: The passive film formed on Fe in pH 8.4 borate buffer (0. 1 36 M) over a broad potential range was characterized by in situ XANES (x-ray absorption near edge structure). On stepping the potential to a value between -0.6 V and +0.4 V (MSE), a passive film forms without detectable dissolution. The edge position indicates that the valence state of Fe in the film is 10 {+-} 5% Fe{sup 2+} and 90 {+-} 5% Fe{sup 3+}. Formation of a passive film at potentials between -0.8 V and -0.65 V is associated with dissolution prior to passivation, and a lower average valence state of 17 {+-} 5% Fe{sup 2+} and 83 {+-} 5% Fe{sup 3+}. At -0.9 V, the Fe did not passivate. The passive film that forms in pH 8.2 sodium acetate (0.1 M) at +0.4 V gives an edge similar to the high potential passive film formed in borate buffer, but dissolution occurs prior to passivation.
Date: December 31, 1996
Creator: Oblonsky, L.J.; Ryan, M.P. & Isaacs, S.
Partner: UNT Libraries Government Documents Department

Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia

Description: Benzoate degradation by an anaerobic, syntrophic bacterium, strain SB, in coculture with Desulfovibrio strain G-11 reached a threshold value which depended on the amount of acetate added, and ranged from about 2.5 to 29.9 {mu}M. Increasing acetate concentrations also uncompetitively inhibited benzoate degradation. The apparent V{sub max} and K{sub m} for benzoate degradation decreased with increasing acetate concentration, but the benzoate degradation capacity (V{sub max}/K{sub m}) of cell suspensions remained comparable. The addition of an acetate-using bacterium to cocultures after the threshold was reached resulted in the degradation of benzoate to below the detection limit. Mathematical simulations showed that the benzoate threshold was not predicted by the inhibitory effect of acetate on benzoate degradation kinetics. With nitrate instead of sulfate as the terminal electron acceptor, no benzoate threshold was observed in the presence of 20 mM acetate even though the degradation capacity was lower with nitrate than with sulfate. When strain SB was grown with a hydrogen-using partner that had a 5-fold lower hydrogen utilization capacity, a 5 to 9-fold lower the benzoate degradation capacity was observed compared to SB/G-11 cocultures. The Gibb`s free energy for benzoate degradation was less negative in cell suspensions with threshold compared to those without threshold. These studies showed that the threshold was not a function of the inhibition of benzoate degradation capacity by acetate, or the toxicity of the undissociated form of acetate. Rather a critical or minimal Gibb`s free energy may exist where thermodynamic constraints preclude further benzoate degradation.
Date: March 1, 1997
Creator: Warikoo, V.; McInerney, M.J. & Suflita, J.M.
Partner: UNT Libraries Government Documents Department

Enzymology of the Pathway for Acetate Conversion to Methane in Methanosarcina thermophilia

Description: These topics are covered: Regulation of enzyme synthesis; Activation of acetate to acetyl-CoA; Biochemistry of acetyl-CoA cleavage; Electron transport; Other enzymes implicated in the pathway of acetate conversion to methane; and publications resulting from this work.
Date: May 4, 1999
Creator: Ferry, James G.
Partner: UNT Libraries Government Documents Department

Thiourea - Lanthanide Acetate Complexes

Description: Complexes between thiourea and lanthanide acetates were prepared of the general composition. Dihydrated thiourea complexes are isomorphous; monohydrates are also isomorphous, but with a different structure from the dihydrates. No definite evidence for metal-sulfur bonding was found. This article discusses results of the study.
Date: August 29, 2001
Creator: Karraker, D.G.
Partner: UNT Libraries Government Documents Department

Coordination of Lanthanide Acetates

Description: A study of the structures of hydrated and anhydrous lanthanide acetates by X-ray diffraction, infrared spectra, and absorption spectra demonstrates that there are three separate structures for hydrated lanthanide acetates and four structures for anhydrous acetates. This paper discusses the results of that study.
Date: August 29, 2001
Creator: Karraker, D.G.
Partner: UNT Libraries Government Documents Department


Description: The goal of this project is to facilitate the production of carbon fibers from low-rank coal (LRC) tars. To this end, the effect of demineralization on the tar yields and composition was investigated using high-sodium and high-calcium lignites commonly mined in North Dakota. These coals were demineralized by ion exchange with ammonium acetate and by cation dissolution with nitric acid. Two types of thermal processing were investigated for obtaining suitable precursors for pitch and fiber production. Initially, tars were produced by simple pyrolysis of the set of samples at 650 C. Since these experiments produced little usable material from any of the samples, the coals were heated at moderate temperatures (380 and 400 C) in tetralin solvent to form and extract the plastic material (metaplast) that forms at these temperatures.
Date: July 1, 2001
Creator: Olson, Edwin S.
Partner: UNT Libraries Government Documents Department


Description: Analytical methods for determining formic, acetic and oxalic acids, formaldehyde, and methanol have been evaluated and/or optimized for measuring products from photoreduction of CO{sub 2} in illuminated, aqueous suspensions of photocatalysts. An electrophoresis anion separation method (CIA) can detect aqueous formate and oxalate ions at 22 and 17 {micro}M (1 ppm), respectively. Recalibration of the Nash formaldehyde determination shows that as little as 10 {micro}M (0.3 ppm) can be detected spectrally. Several experiments using suspensions of Pt/TiO{sub 2}, SrTiO{sub 3}, and SrTiO{sub 3} with Cr and Sb were illuminated in CO{sub 2} saturated solutions. No acids were detected in most experiments using CIA; however, ion chromatography (IC) was able to detect formate and acetate at low {micro}M (sub ppm) concentrations in several experiments using Pt/TiO{sub 2} and SrTiO{sub 3} in sunlight and with xenon uv light. Analysis for methanol by gas chromatography showed that not more than 2 ppm methanol could have formed and probably less. Adding 0.6 mM 2-propanol to an irradiated CO{sub 2}/TiO{sub 2} suspension led to formation of 550 {micro}M formate, but no formaldehyde, probably because re-oxidation of formate by semiconductor holes was competitively blocked. Loss of C{sub 1} products at higher concentrations by re-oxidation may be an important process, limiting the accumulation of products. Preliminary estimates were made of the physical size of a solar CO{sub 2} photoreduction unit large enough to reduce the CO{sub 2} produced from a 1000 MW coal-fired electricity plant. A perfectly efficient system could be as small as 2 to 3 km{sup 2}.
Date: August 25, 2003
Creator: Mill, Theodore & Tungudomwongsa, Haruthai
Partner: UNT Libraries Government Documents Department


Description: This project, which was sponsored by the U.S. Department of Energy (DOE) under the Clean Coal Technology Program to demonstrate the production of methanol from coal-derived synthesis gas (syngas), has completed the 69-month operating phase of the program. The purpose of this Final Report for the ''Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process'' is to provide the public with details on the performance and economics of the technology. The LPMEOH{trademark} Demonstration Project was a $213.7 million cooperative agreement between the DOE and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The DOE's cost share was $92,708,370 with the remaining funds coming from the Partnership. The LPMEOH{trademark} demonstration unit is located at the Eastman Chemical Company (Eastman) chemicals-from-coal complex in Kingsport, Tennessee. The technology was the product of a cooperative development effort by Air Products and Chemicals, Inc. (Air Products) and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} Process is ideally suited for directly processing gases produced by modern coal gasifiers. Originally tested at the Alternative Fuels Development Unit (AFDU), a small, DOE-owned process development facility in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst, and allowing the methanol synthesis reaction to proceed at higher rates. The LPMEOH{trademark} Demonstration Project accomplished the objectives set out in the Cooperative Agreement with DOE for this Clean Coal Technology project. Overall plant availability (defined as the percentage of time that the LPMEOH{trademark} demonstration unit was able to operate, with the exclusion ...
Date: June 1, 2003
Creator: Heydorn, E.C.; Diamond, B.W. & Lilly, R.D.
Partner: UNT Libraries Government Documents Department