7,620 Matching Results

Search Results

Advanced search parameters have been applied.

Validation of HPPCALC

Description: HPPCALC 2.1 was developed to analyze the raw data from a PNGV Hybrid Pulse Power Characterization (HPPC) test and produce seven standard plots that consist of resistance, power and available energy relationships. The purpose of the HPPC test is to extrapolate the total power capability within predetermined voltage limits of a prototype or full production cell regardless of chemistry with respect to the PNGV goals as outlined in the PNGV Testing Manual, Revision 3. The power capability gives the Electrochemical Energy Storage team the tools to compare different battery sizes and chemistries for possible use in a hybrid electric vehicle. The visual basic program HPPCALC 2.1 opens the comma separated value file that is produced from a Maccor, Bitrode or Energy Systems tester. It extracts the necessary information and performs the appropriate calculations. This information is arranged into seven graphs: Resistance versus Depth of Discharge, Power versus Depth of Discharge, Power versus Energy, Power versus Energy, Energy versus Power, Available Energy versus Power, Available Energy versus Power, and Power versus Depth of Discharge. These are the standard plots that are produced for each HPPC test. The primary metric for the HPPC test is the PNGV power, which is the power at which the available energy is equal to 300 Wh. The PNGV power is used to monitor the power degradation of the battery over the course of cycle or calendar life testing.
Date: October 1, 2006
Creator: Belt, J. R.
Partner: UNT Libraries Government Documents Department

Central Calorimeter Support Cradle Jack Failure Analysis

Description: The Central Calorimeter and its support cradle are to be supported by either hydraulic or mechanical jacks. If hydraulics are used, each support will use two hydraulically coupled jacks with two out of the four supports hydraulically coupled giving the effect of a three point support system. If mechanical jacks are used, all four points are used for support. Figure 2 shows two examples of jack placement on a 3.5 inch support plate. These two support scenarios lead to five jack failure cases to be studied. This report deals with the way in which a 0.25 inch drop (failed jack) at one support affects the stresses in the cradle. The stresses from each failure case were analyzed in two ways. First, stress factors, defined as quotients of stress intensities of the failed case with respect to the static case, were generated and then, hand calculations similar to those in Engineering Note 3740.215-EN-14 were done using the reaction forces from the failed case.
Date: April 10, 1987
Creator: Rudland, D.L.
Partner: UNT Libraries Government Documents Department