Search Results

Advanced search parameters have been applied.
open access

Performance of 1300 Mhz KEK-type single cell niobium cavities

Description: Four single cell niobium cavities fabricated from Tokyo-Denkai material of RRR=200 have been tested repeatedly with the purpose to evaluate different fabrication and processing techniques used at KEK and Jefferson Lab, respectively. Two cavities--K-15 and K-16--have been manufactured completely at KEK prior to shipment to Jefferson Lab. In addition, K-16 had received a barrel polishing treatment at KEK, resulting in the removal of 40 {mu}m of material from the surface. Cavity K-17 was electron-beam welded at Jefferson Lab; the deep drawing of the half cells and the trimming of the cups for electron-beam welding were done at KEK, however. Cavity JL-1 was completely fabricated at Jefferson Lab. Often, some processing field levels related to electronic activity in the cavities, possibly multipacting, have been seen at KEK and the purpose of this investigation is a verification of such observations. In addition, a comparison of different fabrication procedures and surface treatments are of interest for optimizing cost and performance for larger scale application. In several cavities, accelerating gradients between 20 MV/m {<=} E{sub acc} {<=} 27 MV/m have been measured with only little field emission loading. In one of the cavities, resonant electron loading was ''provoked'' by rinsing it with oil contaminated acetone. The observed multipacting levels at E{sub acc}=13 MV/m and 25 MV/m could be identified with the help of simulation calculations as 1-point and 2-point multipacting across the equator of the cavity. There is - as previously reported - a rather strong dependence of the quench field levels on the amount of material removed from the surface, confirming a picture of a surface damage layer which becomes depleted of defects as more and more of it is removed.
Date: October 1, 1997
Creator: Kneisel, P.; Saito, K. & Parodi, R.
Partner: UNT Libraries Government Documents Department
open access

Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts

Description: Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators.
Date: May 21, 2004
Creator: Shuets, G.
Partner: UNT Libraries Government Documents Department
open access

Program for Plasma-Based Concepts for Future High Energy Accelerators

Description: OAK B204 Program for Plasma-Based Concepts for Future High Energy Accelerators. The progress made under this program in the period since November 15, 2002 is reflected in this report. The main activities for this period were to conduct the first run of the E-164 high-gradient wakefield experiment at SLAC, to prepare for run 2 and to continue our collaborative effort with CERN to model electron cloud interactions in circular accelerators. Each of these is described. Also attached to this report are papers that were prepared or appeared during this period.
Date: September 25, 2003
Creator: Katsouleas, Thomas C. & Muggli, Patric
Partner: UNT Libraries Government Documents Department
open access

Stability of Phase Oscillations Under Two Applied Frequencies

Description: Stability crileria are developed for the stability of motions of particles in a bucket while subjected to an acceleration voltage at small frequency difference {Delta}{nu}. The motion is stable if {Delta}{nu} {&gt;=} {nu}{sub s} where {nu}{sub s} is the phase oscíllation frequency. This is essentially the same criterion as that the buckets not touch.
Date: June 2, 1971
Creator: Mills, F. E.
Partner: UNT Libraries Government Documents Department
open access

Optical Synchrotron Radiation Beam Imaging with a Digital Mask

Description: We have applied a new imaging/optical masking technique, which employs a digital micro-mirror device (DMD) and optical synchrotron radiation (OSR), to perform high dynamic range (DR) beam imaging at the JLAB Energy Recovery Linac and the SLAC/SPEAR3 Synchrotron Light Source. The OSR from the beam is first focused onto the DMD to produce a primary image; selected areas of this image are spatially filtered by controlling the state of individual micro-mirrors; and finally, the filtered image is refocused onto a CCD camera. At JLAB this technique has been used successfully to view the beam halo with a DR ~ 105. At SPEAR3 the DMD was used to filter out the bright core of the stored beam to study the turn-by-turn dynamics of the 10-3 weaker injected beam. We describe the optical performance, present limitations and our plans to improve the DR of both experimental systems.
Date: November 1, 2012
Creator: Fiorito, R. B.; Zhang, H. D.; Corbett, W. J.; Fisher, A. S.; Mok, W. Y.; Tian, K. et al.
Partner: UNT Libraries Government Documents Department
open access

Studies of Resistive Wall Heating at JLAB FEL

Description: When the JLAB FEL is under CW operation, it had been observed that temperature rises over the wiggler vacuum chamber, presumably as the result of the power deposition on the resistive wall of the wiggler chamber. Previous analyses have been done on the resistive wall impedance for various cases, such as DC, AC, and anomalous skin effects*. Here we report an investigation on the beam kinetic energy losses for each of these cases. This study includes the non-ultrarelativistic effect on resistive wall loss, for both round pipe and parallel plates. We will present the comparison of our results with the measured data obtained during CW operation of the JLAB FEL. Other possible factors contributing to the measured heating will also be discussed.
Date: June 1, 2013
Creator: Li, Rui & Benson, Stephen V.
Partner: UNT Libraries Government Documents Department
open access

A Harmonic Kicker Scheme for the Circulator Cooler Ring in the Proposed Medium Energy Electron-Ion Collider

Description: The current electron cooler design for the proposed Medium Energy Electron-Ion collider (MEIC) at Jefferson Lab utilizes a circulator ring for reuse of the cooling electron bunch up to 100 times to cool the ion beams. This cooler requires a fast kicker system for injecting and extracting individual bunches in the circulator ring. Such a kicker must work at a high repetition rate, up to 7.5 to 75 MHz depending on the number of turns in the recirculator ring. It also must have a very short rise and fall time (of order of 1 ns) such that it will kick an individual bunch without disturbing the others in the ring. Both requirements are orders of magnitude beyond the present state-of-the-art as well as the goals of other on-going kicker R&amp;D programs such as that for the ILC damping rings. In this paper we report a scheme of creating this fast, high repetition rate kicker by combining RF waveforms at multiple frequencies to create a kicker waveform that will, for example, kick every eleventh bunch while leaving the other ten unperturbed. We also present a possible implementation of this scheme as well as discuss its limitations.
Date: June 1, 2013
Creator: Nissen, Edward W.; Hutton, Andrew M. & Kimber, Andrew J.
Partner: UNT Libraries Government Documents Department
open access

Design Concept of a Gamma-gamma Higgs Factory Driven by Thin Laser Targets and Energy Recovery Linacs

Description: A gamma-gamma collider has long been considered an option for a Higgs Factory. Such photon colliders usually rely on Compton back-scattering for generating high energy gamma photons and further Higgs bosons through gamma-gamma collisions. The presently existing proposals or design concepts all have chosen a very thick laser target (i.e., high laser photon intensity) for Compton scatterings. In this paper, we present a new design concept of a gamma-gamma collider utilizing a thin laser target (i.e., relatively low photon density), thus leading to a low electron to gamma photon conversion rate. This new concept eliminates most useless and harmful low energy soft gamma photons from multiple Compton scattering so the detector background is improved. It also greatly relaxes the requirement of the high peak power of the laser, a significant technical challenge. A high luminosity for such a gamma-gamma collider can be achieved through an increase of the bunch repetition rate and current of the driven electron beam. Further, multi-pass recirculating linac could greatly reduce the linac cost and energy recovery is required to reduce the needed RF power.
Date: June 1, 2013
Creator: Zhang, Yuhong
Partner: UNT Libraries Government Documents Department
open access

Hydrodynamic and shock heating instabilities of liquid metal strippers for RIA

Description: Stripping of accelerated ions is a key problem for the design of RIA to obtain high efficiency. Thin liquid Lithium film flow is currently considered as stripper for RIA ion beams to obtain higher Z for following acceleration: in extreme case of Uranium from Z=29 to Z=60-70 (first stripper) and from Z=70 till full stripping Z=92 (second stripper). Ionization of ion occurs due to the interaction of the ion with electrons of target material (Lithium) with the loss of parts of the energy due to ionization, Q{sub U}, which is also accompanied with ionization energy losses, Q{sub Li} of the lithium. The resulting heat is so high that can be removed not by heat conduction but mainly by convection, i.e., flowing of liquid metal across beam spot area. The interaction of the beam with the liquid metal generates shock wave propagating along direction perpendicular to the beam as well as excites oscillations along beam direction. We studied the dynamics of these excited waves to determine conditions for film stability at the required velocities for heat removal. It will allow optimizing jet nozzle shapes and flow parameters to prevent film fragmentation and to ensure stable device operation.
Date: May 24, 2013
Creator: Hassanein, Ahmed
Partner: UNT Libraries Government Documents Department
open access

A Test Facility for MEIC ERL Circulator Ring Based Electron Cooler Design

Description: An electron cooling facility which is capable to deliver a beam with energy up to 55 MeV and average current up to 1.5 A at a high bunch repetition rate up to 750 MHz is required for MEIC. The present cooler design concept is based on a magnetized photo-cathode SRF gun, an SRF ERL and a compact circulator ring. In this paper, we present a proposal of a test facility utilizing the JLab FEL ERL for a technology demonstration of this cooler design concept. Beam studies will be performed and supporting technologies will also be developed in this test facility.
Date: May 1, 2013
Creator: Zhang, Yuhong; Derbenev, Yaroslav S.; Douglas, David R.; Hutton, Andrew M.; Krafft, Geoffrey A. & Nissen, Edward W.
Partner: UNT Libraries Government Documents Department
open access

High Gradient Results of ICHIRO 9-Cell Cavity in Collaboration With KEK and Jlab

Description: KEK and Jlab have continued S0-study collaboration on ICHIRO 9-cell cavities since 2008. In 2010, we have started S0 study on ICHIRO#7, full 9-cell cavity with end groups. Surface treatments and vertical tests have been repeated at Jlab. Maximum gradient of 40MV/m was achieved so far. We will describe the details of that and further plan of S0-study on ICHIRO 9-cell.
Date: July 1, 2011
Creator: Furuta, F.; Konomi, T.; Saito, K.; Eremeev, G. V. & Geng, R. L.
Partner: UNT Libraries Government Documents Department
open access

A Program for Optimizing SRF Linac Costs

Description: Every well-designed machine goes through the process of cost optimization several times during its design, production and operation. The initial optimizations are done during the early proposal stage of the project when none of the systems have been engineered. When a superconducting radio frequency (SRF) linac is implemented as part of the design, it is often a difficult decision as to the frequency and gradient that will be used. Frequently, such choices are made based on existing designs, which invariably necessitate moderate to substantial modifications so that they can be used in the new accelerator. Thus the fallacy of using existing designs is that they will frequently provide a higher cost machine or a machine with sub-optimal beam physics parameters. This paper describes preliminary results of a new software tool that allows one to vary parameters and understand the effects on the optimized costs of construction plus 10 year operations of an SRF linac, the associated cryogenic facility, and controls, where operations includes the cost of the electrical utilities but not the labor or other costs. It derives from collaborative work done with staff from Accelerator Science and Technology Centre, Daresbury, UK [1] several years ago while they were in the process of developing a conceptual design for the New Light Source project. The initial goal was to convert a spread sheet format to a graphical interface to allow the ability to sweep different parameter sets. The tools also allow one to compare the cost of the different facets of the machine design and operations so as to better understand the tradeoffs.
Date: April 1, 2013
Creator: Powers, Thomas J.
Partner: UNT Libraries Government Documents Department
open access

FINAL TECHNICAL REPORT FOR DE-FG02-05ER64097 Systems and Methods for Injecting Helium Beams into a Synchrotron Accelerator

Description: A research grant was approved to fund development of requirements and concepts for extracting a helium-ion beam at the LLUMC proton accelerator facility, thus enabling the facility to better simulate the deep space environment via beams sufficient to study biological effects of accelerated helium ions in living tissues. A biologically meaningful helium-ion beam will be accomplished by implementing enhancements to increase the accelerator’s maximum proton beam energy output from 250MeV to 300MeV. Additional benefits anticipated from the increased energy include the capability to compare possible benefits from helium-beam radiation treatment with proton-beam treatment, and to provide a platform for developing a future proton computed tomography imaging system.
Date: September 30, 2008
Creator: Bush, David A
Partner: UNT Libraries Government Documents Department
open access

Use of Multipass Recirculation and Energy Recovery In CW SRF X-FEL Driver Accelerators

Description: We discuss the use of multipass recirculation and energy recovery in CW SRF drivers for short wavelength FELs. Benefits include cost management (through reduced system footprint, required RF and SRF hardware, and associated infrastructure - including high power beam dumps and cryogenic systems), ease in radiation control (low drive beam exhaust energy), ability to accelerate and deliver multiple beams of differing energy to multiple FELs, and opportunity for seamless integration of multistage bunch length compression into the longitudinal matching scenario. Issues include all those associated with ERLs compounded by the challenge of generating and preserving the CW electron drive beam brightness required by short wavelength FELs. We thus consider the impact of space charge, BBU and other environmental wakes and impedances, ISR and CSR, potential for microbunching, intra-beam and beam-residual gas scattering, ion effects, RF transients, and halo, as well as the effect of traditional design, fabrication, installation and operational errors (lattice aberrations, alignment, powering, field quality). Context for the discussion is provided by JLAMP, the proposed VUV/X-ray upgrade to the existing Jefferson Lab FEL.
Date: August 1, 2010
Creator: Douglas, David; Akers, Walt; Benson, Stephen V.; Biallas, George; Blackburn, Keith; Boyce, James et al.
Partner: UNT Libraries Government Documents Department
open access

Electron Beam Diagnostics Of The JLAB UV FEL

Description: In this contribution we describe various systems and aspects of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line at the existing 10 kW IR Upgrade FEL. Here, we describe a set of the following systems. A combination of OTR and phosphor viewers is used for measurements of the transverse beam profile, transverse emittance, and Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A system of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurement system is used to set up bunch compression in an optimal way, such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of diagnostic systems made a significant contribution in achieving first lasing of the FEL after only about 60 hours of beam operation.
Date: March 1, 2011
Creator: Evtushenko, Pavel; Benson, Stephen; Biallas, George; Coleman, James; Dickover, Cody; Douglas, David et al.
Partner: UNT Libraries Government Documents Department
open access

Simultaneous Four-Hall Operation for 12 GeV CEBAF

Description: The CEBAF accelerator at Jefferson lab will have a new experimental hall, Hall D, added to its existing three halls as a part of the ongoing 12 GeV upgrade. Under the present CEBAF design, there is no option for sending beam to all four halls simultaneously. At least one hall has to stay down during the machine operation. A new pattern for interleaving the beam bunches is introduced that allows simultaneous operation of all four halls and provide opportunity for additional future experimental beams. The new configuration presents only a minimal change to the existing CEBAF extraction system. In fact all the lower pass extractions will stay as they are and only the frequency of 5th?pass horizontal RF separator will change. In order to make room for the new Hall D beam among the existing three beams, the beam repetition rate is reduced only for the halls taking beam at the highest pass. This and other details of the new configuration and beam pattern will be presented and discussed. A separate paper in this conference will cover the implementation choices including changes to the beam source and extraction region.*
Date: June 1, 2013
Creator: Kazimi, Reza
Partner: UNT Libraries Government Documents Department
open access

The New 2nd-Generation SRF R&D Facility at Jefferson Lab: TEDF

Description: The US Department of Energy has funded a near-complete renovation of the SRF-based accelerator research and development facilities at Jefferson Lab. The project to accomplish this, the Technical and Engineering Development Facility (TEDF) Project has completed the first of two phases. An entirely new 3,100 m{sup 2} purpose-built SRF technical work facility has been constructed and was occupied in summer of 2012. All SRF work processes with the exception of cryogenic testing have been relocated into the new building. All cavity fabrication, processing, thermal treatment, chemistry, cleaning, and assembly work is collected conveniently into a new LEED-certified building. An innovatively designed 800 m2 cleanroom/chemroom suite provides long-term flexibility for support of multiple R&D and construction projects as well as continued process evolution. The characteristics of this first 2nd-generation SRF facility are described.
Date: September 1, 2012
Creator: Reece, Charles E. & Reilly, Anthony V.
Partner: UNT Libraries Government Documents Department
open access

Q0 Improvement of Large-Grain Multi-Cell Cavities by Using JLab's Standard ILC EP Processing

Description: As reported previously at the Berlin workshop, applying the JLab standard ILC electropolishing (EP) recipe on previously buffered chemical polishing (BCP) etched fine-grain multi-cell cavities results in improvement both in gradient and Q{sub 0}. We recently had the opportunity to experiment with two 1300 MHz 9-cell large-gain niobium cavities manufactured by JLab and Peking University. Both cavities were initially BCP etched and further processed by using JLab's standard ILC EP recipe. Due to fabrication defects, these two cavities only reached a gradient in the range of 20-30 MV/m. Interestingly both cavities demonstrated significant Q{sub 0} improvement in the gradient range of 15-20 MV/m. At 2K, a Q{sub 0} value of 2E10 is achieved at 20 MV/m. At a reduced temperature of 1.8K, a Q{sub 0} value of 3E10 is achieved at 20 MV/m. These results suggest that a possible path for obtaining higher Q{sub 0} in the medium gradient range is to use the large-grain material for cavity fabrication and EP and low temperature bake for cavity processing.
Date: July 1, 2011
Creator: Geng, R. L.; Eremeev, G. V.; Kneisel, P.; Liu, K. X.; Lu, X. Y. & Zhao, K.
Partner: UNT Libraries Government Documents Department
open access

Source and Extraction for Simultaneous Four-hall Beam Delivery System at CEBAF

Description: A new design for simultaneous delivery of the electron beam to all four 12 GeV CEBAF experimental halls* requires a new 750 MHz RF separator system in the 5th pass extraction region, a 250 MHz repetition rate for its beams, and addition of a fourth laser at the photo-cathode gun. The proposed system works in tandem with the existing 500 MHz RF separators and beam repetition rate on the lower passes. The new 5th pass RF separators will have the same basic design but modified to run at 750 MHz. The change to the beam repetition rate will be at the photo-cathode gun through an innovative upgrade of the seed laser driver system using electro-optic modulators. The new laser system also allows addition of the fourth laser. The new RF separators, the new laser system and other hardware changes required to implement the Four-Hall operation delivery system will be discussed in this paper.
Date: June 1, 2013
Creator: Kazimi, Reza; Wang, Haipeng; Spata, Mike F. & Hansknecht, John C.
Partner: UNT Libraries Government Documents Department
open access

Electron Model Of A Dogbone RLA With Multi-Pass Arcs

Description: The design of a dogbone Recirculated Linear Accelerator, RLA, with linear-field multi-pass arcs was earlier developed [1] for accelerating muons in a Neutrino Factory and a Muon Collider. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Such an RLA may have applications going beyond muon acceleration. This paper describes a possible straightforward test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected at the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to the frequency readily available at CEBAF: 1.5 GHz. The footprint of a complete RLA fits in an area of 25 by 7 m. The scheme utilizes only fixed magnetic fields including injection and extraction. The hardware requirements are not very demanding, making it straightforward to implement
Date: September 1, 2012
Creator: Beard, Kevin B.; Roblin, Yves R.; Morozov, Vasiliy; Bogacz, Slawomir Alex & Krafft, Geoffrey A.
Partner: UNT Libraries Government Documents Department
Back to Top of Screen