Search Results

Advanced search parameters have been applied.
open access

Electropolishing as a Decontamination Process: Progress and Applications.

Description: Electropolishing is a rapid and effective technique for removing plutonium and other radionuclide contamination from a variety of metal surfaces. The major objective of this continuing research is to develop electropolishing into a large-scale decontamination technique that can completely and economically remove transuranic and other surface contamination from large volumes of metallic waste. These research studies have demonstrated the ability of electropolishing to reduce the radiation levels of steel tools and stainless steel vacuum system components, which were heavily contaminated with plutonium oxide. Other examples of objects that have been decontaminated within minutes using electropolishing include hot cell manipulator assemblies, analytical instrument components, laboratory transfer containers, offsite shipping containers, fission product storage capsules, laboratory animal cages, and nuclear reactor process tube components. One of the major activities of this research has been the establishment and intensive operation of a 400-gal immersion electropolishing system designed specifically to develop and demonstrate decontamination techniques for representative plutonium- and beta/gamma-contaminated components. Substantial progress has also been made in developing in situ electropolishing techniques that can be used to decontaminate metallic surfaces that cannot readily be transported to or immersed in a conventional electropolishing tank. Sectioning/pretreatment studies are underway to develop and demonstrate optimum disassembly, sectioning, surface preparation, and gross contamination removal procedures. Other supporting studies are also in progress to provide a sound technical basis for scale-up and widespread application of this new decontamination process.
Date: July 28, 1978
Creator: Allen, R. P.; Arrowsmith, H. W.; Charlot, L. A. & Hooper, J. L.
Partner: UNT Libraries Government Documents Department
open access

Characterization of Mo/Si multilayer growth on stepped topographies

Description: Mo/Si multilayer mirrors with nanoscale bilayer thicknesses have been deposited on stepped substrate topographies, using various deposition angles. The multilayer morphology at the stepedge region was studied by cross section transmission electron microscopy. A transition from a continuous- to columnar layer morphology is observed near the step-edge, as a function of the local angle of incidence of the deposition flux. Taking into account the corresponding kinetics and anisotropy in layer growth, a continuum model has been developed to give a detailed description of the height profiles of the individual continuous layers. Complementary optical characterization of the multilayer system using a microscope operating in the extreme ultraviolet wavelength range, revealed that the influence of the step-edge on the planar multilayer structure is restricted to a region within 300 nm from the step-edge.
Date: August 31, 2011
Creator: van den Boogaard, A. J. R.; Louis, E.; Zoethout, E.; Goldberg, K. A. & Bijkerk, F.
Partner: UNT Libraries Government Documents Department
open access

The Thermoelastic Phase Transition in Au-Cd Alloys Studies by Acoustic Emission

Description: The acoustic emission generated during the thermoelastic phase transitions in polycrystalline Au-47.5 at.% Cd and in Au-49 at.% Cd alloys was recorded and analyzed. The emission detected is a manifestation of the frictional energy dissipated by the moving interfaces during the nucleation and growth stages of the reversible phase transitions. It was found that the amount of energy dissipated depends upon the direction of the transformation, the heating or cooling rates, and the specific crystallographic features of the martensitic phases. Premartensitic acoustic activity was detected in both alloys at temperatures of about 25 {degrees}C before the M{sub s} point. The dynamics and kinetics of martensitic thermoelastic phase transformations are discussed in terms of the accompanying generation of acoustic emission.
Date: March 1, 1980
Creator: Baram, I. & Rosen, M.
Partner: UNT Libraries Government Documents Department
open access

Degradation of Thermal Barrier Coatings from Deposits and Its Mitigation

Description: Ceramic thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, in the case of syngas-fired engines, fly ash particulate impurities that may be present in syngas can melt on the hotter TBC surfaces and form glassy deposits. These deposits can penetrate the TBCs leading to their failure. In experiments using lignite fly ash to simulate these conditions we show that conventional TBCs of composition 93wt% ZrO{sub 2} + 7wt% Y{sub 2}O{sub 3} (7YSZ) fabricated using the air plasma spray (APS) process are completely destroyed by the molten fly ash. The molten fly ash is found to penetrate the full thickness of the TBC. The mechanisms by which this occurs appear to be similar to those observed in degradation of 7YSZ TBCs by molten calcium-magnesium-aluminosilicate (CMAS) sand and by molten volcanic ash in aircraft engines. In contrast, APS TBCs of Gd{sub 2}Zr{sub 2}O{sub 7} composition are highly resistant to attack by molten lignite fly ash under identical conditions, where the molten ash penetrates ~25% of TBC thickness. This damage mitigation appears to be due to the formation of an impervious, stable crystalline layer at the fly ash/Gd{sub 2}Zr{sub 2}O{sub 7} TBC interface arresting the penetrating moltenfly- ash front. Additionally, these TBCs were tested using a rig with thermal gradient and simultaneous accumulation of ash. Modeling using an established mechanics model has been performed to illustrate the modes of delamination, as well as further opportunities to optimize coating microstructure. Transfer of the technology was developed in this program to all interested parties.
Date: December 31, 2011
Creator: Padture, Nitin
Partner: UNT Libraries Government Documents Department
open access

Hydrogen Dissociation on Pd4S Surfaces

Description: Exposure of Pd-based hydrogen purification membranes to H,S. a common contaminant in coal gasification streams, can cause membrane performance to deteriorate, either by deactivating surface sites required for dissociative H, adsorption or by forming a low-permeability sulfide scale. In this work. the composition, structure, and catalytic activity of Pd4S, a surface scale commonly observed in Pd-membrane separation of hydrogen from sulfur-containing gas streams, were examined using a combination of experimental characterization and density functional theory (DFT) calculations. A Pd,S sample was prepared by exposing a 100 f1m Pd foil to H2S at 908 K. Both X-ray photoemission depth profiling and low energy ion scattering spectroscopic (LEISS) analysis reveal slight sulfur-enrichment of the top surface of the sample. This view is consistent with the predictions of DFT atomistic thermodynamic calculations. which identified S-terminated Pd,S surfaces as energetically favored over corresponding Pd-terminated surfaces. Activation barriers for H2 dissociation on the Pd,S surfaces were calculated. Although barriers are higher than on Pd(lll). transition state theory analysis identified reaction pathways on the S-terminated surfaces for which hydrogen dissociation rates are high enough to sustain the separation process at conditions relevant to gasification applications.
Date: January 1, 2009
Creator: Miller, J. B.; Alfonso, D. R.; Howard, B. H.; O'Brien, C. P. & Morreale, B. D.
Partner: UNT Libraries Government Documents Department
open access

The Parabolic Growth Op Oxide Solid Solutions on Binary Alloys: A Semi-Empirical Approach.

Description: The growth of solid solution oxide scales on alloys has been described by considering either the transport of the cations themselves, or that of the defect species in the oxide lattice. The two approaches have been shown to be similar. However, it has become apparent that the simplified defect model implicitly assumed in previous analyses using the ionic transport approach is not adequate to fully describe the variation of ionic diffusivities with oxygen potential or oxide composition. Further analyses, using a combination of the two approaches, are suggested.
Date: October 1, 1980
Creator: Whittle, D. P.; Gesmundo, F. & Viani, F.
Partner: UNT Libraries Government Documents Department
Back to Top of Screen