28,220 Matching Results

Search Results

Advanced search parameters have been applied.

Reaction kinetics and x-ray absorption spectroscopy studies of yttrium containing metal hydride electrodes

Description: This was a study of electrode degradation mechanisms and the reaction kinetics of LaNi{sub 4.7}Sn{sub 0.3}, La{sub (1{minus}x)} Y{sub x}Ni{sub 4.7}Sn{sub 0.3} (x = 0.1, 0.2, and 0.3) and La{sub 0.7}Y{sub 0.3}Ni{sub 4.6}Sn{sub 0.3}Co{sub 0.1} metal hydride electrodes. Alloy characterization included x-ray diffraction (XRD), x-ray absorption (XAS), hydrogen absorption in a Sieverts apparatus, and electrochemical cycling of alloy electrodes. The atomic volume of H was determined for two of the alloys. Electrochemical kinetic measurements were made using steady state galvanostatic measurements, galvanodynamic sweep, and electrochemical impedance techniques. XAS was used to examine the degree of corrosion of the alloys with cycling. Alloying with Y decreased the corrosion rate. The results are consistent with corrosion inhibition by a Y containing passive film. The increase in the kinetics of the hydrogen oxidation reaction (HOR) with increasing depth of discharge was much greater on the Y containing alloys. This may be due to the dehydriding of the catalytic species on the surface of the metal hydride particles.
Date: December 31, 1998
Creator: Ticianelli, E.A.; Mukerjee, S.; McBreen, J.; Adzic, G.D.; Johnson, J.R. & Reilly, J.J.
Partner: UNT Libraries Government Documents Department

TEPIC - A New High Temperature Structural Foam

Description: The formulation, processing characteristics, microstructure and mechanical properties of a new structural foam, suitable for use at service temperatures up to 200 degrees C, are reported. In each of the respects, the foam is compared to an existing material, called APO-BMI that is currently in use. When these two foams are directly compared, the new foam, called TEPIC, is found to be superior in its mechanical performance. TEPIC is formulated from a non-carcinogenic isocyanate, a di-functional epoxide, and glass microballoons. Compared to APO-BMI processing, TEPIC processing is facile and economical.
Date: unknown
Creator: Whinner, L. L.; Goods, S. H.; Tootle, M. L. & Neuschwanger, C. L.
Partner: UNT Libraries Government Documents Department

Fillability of Thin-Wall Steel Castings

Description: The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.
Date: July 30, 2002
Creator: Voigt, Robert C.; Bertoletti, Joseph; Kaley, Andrew; Ricotta, Sandi & Sunday, Travis
Partner: UNT Libraries Government Documents Department

Correlation of point defects in CdZnTe with charge transport:application to room-temperature x-ray and gamma-ray. Final Technical Report

Description: The primary goal of this project has been to characterize and identify point defects (e.g., impurities, vacancies, vacancy-impurity complexes, etc.) in CdZnTe and determine the mechanisms by which these defects influence the carrier {mu}{tau}products. Special attention is given to the role of shallow donors, shallow acceptors, and deeper acceptors. There are two experimental focus areas in the project: (1) liquid-helium photoluminescence (PL) and PL excitation spectroscopy are used to identify and characterize donors and acceptors and to determine zinc molar fraction; and (2) electron paramagnetic resonance (EPR) and photoinduced EPR experiments are performed at liquid-helium temperature to identify paramagnetic point defects and to determine the concentration of these defects. Results from the two experimental focus areas are correlated with detector performance parameters (e.g., electron and hole {mu}{tau} products), crystal growth conditions, and microstructure analyses.
Date: June 25, 2003
Creator: Giles, Nancy C.
Partner: UNT Libraries Government Documents Department

Final Technical Progress Report: Nanostructured Magnetic Materials

Description: This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.
Date: September 13, 2012
Creator: Falco, Charles M.
Partner: UNT Libraries Government Documents Department

New Manufacturing Method for Paper filler and Fiber Material

Description: The study compares commercial available filler products with a new developed “Hybrid Fiber Filler Composite Material” and how main structural, optical and strength properties are affected by increasing the filler content of at least 5% over commercial values. The study consists of: (i) an overview of paper filler materials used in the paper production process, (ii) discusses the manufacturing technology of lime based filler materials for paper applications, (iii) gives an overview of new emerging paper filler technologies, (iv) discusses a filler evaluation of commercial available digital printing paper products, (v) reports from a detailed handsheet study and 12” pilot plant paper machine trial runs with the new Hybrid Fiber Filler Composite Material, and (vi) evaluates and compares commercial filler products and the new Hybrid Fiber Filler Composite Material with a life cycle analyses that explains manufacturing, economic and environmental benefits as they are applied to uncoated digital printing papers.
Date: November 22, 2011
Creator: Doelle, Klaus
Partner: UNT Libraries Government Documents Department

Computational and Experimental Design of Fe-Based Superalloys for Elevated-Temperature Applications

Description: Analogous to nickel-based superalloys, Fe-based superalloys, which are strengthened by coherent B2- type precipitates are proposed for elevated-temperature applications. During the period of this project, a series of ferritic superalloys have been designed and fabricated by methods of vacuum-arc melting and vacuum-induction melting. Nano-scale precipitates were characterized by atom-probe tomography, ultrasmall- angle X-ray scattering, and transmission-electron microscopy. A duplex distribution of precipitates was found. It seems that ferritic superalloys are susceptible to brittle fracture. Systematic endeavors have been devoted to understanding and resolving the problem. Factors, such as hot rolling, precipitate volume fractions, alloy compositions, precipitate sizes and inter-particle spacings, and hyperfine cooling precipitates, have been investigated. In order to understand the underlying relationship between the microstructure and creep behavior of ferric alloys at elevated temperatures, in-situ neutron studies have been carried out. Based on the current result, it seems that the major role of β΄ with a 16%-volume fraction in strengthening ferritic alloys is not load sharing but interactions with dislocations. The oxidation behavior of one ferritic alloy, FBB8 (Fe-6.5Al-10Ni-10Cr-3.4Mo-0.25Zr-0.005B, weight percent), was studied in dry air. It is found that it possesses superior oxidation resistance at 1,023 and 1,123 K, compared with other creep-resistant ferritic steels [T91 (modified 9Cr-1Mo, weight percent) and P92 (9Cr-1.8W-0.5Mo, weight percent)]. At the same time, the calculation of the interfacial energies between the -iron and B2-type intermetallics (CoAl, FeAl, and NiAl) has been conducted.
Date: January 14, 2012
Creator: Liaw, Peter K.; Fine, Morris E.; Ghosh, Gautam; Asta, Mark D.; Liu, Chain T.; Sun, Zhiqian et al.
Partner: UNT Libraries Government Documents Department

Final Report: Stability and Novel Properties of Magnetic Materials and Ferromagnet / Insulator Interfaces

Description: We report investigations of the synthesis, structure, and properties of new materials for spintronic applications integrated onto silicon substrates. Our primary focus is materials with very high, negative, intrinsic spin polarization of the density of states at the Fermi level. We have developed a new synthesis method for Fe3O4 thin films through selective oxidation of Fe, resulting in smooth, low-defect density films. We have synthesized Fe4N films and shown that they preferentially oxidize to Fe3O4. When integrated into magnetic tunnel junctions consisting of Fe4N / AlOx / Fe, oxidation at the Fe4N / AlOx interface creates Fe3O4, leading to negative tunneling magnetoresistance (TMR). Oxidation of Fe in nominally symmetric CoFe / AlOx / CoFe also produces Fe3O4 and negative TMR under selected oxidation conditions.
Date: July 24, 2013
Creator: Voyles, Paul
Partner: UNT Libraries Government Documents Department

Non-Vacuum Electron Beam Welding

Description: Original objectives of CRADA number BNL-01-03 between BNL and Acceleron, Inc., were to further develop the Plasma Window concept (a BNL invention covered by US Patent number 5,578,831), mate the Plasma Window to an existing electron beam welder to perform in-air electron beam welding, and mount the novel nonvacuum electron beam welder on a robot arm. Except for the last objective, all other goals were met or exceeded. Plasma Window design and operation was enhanced during the project, and it was successfully mated to a conventional4 kW electron beam welder. Unprecedented high quality non-vacuum electron beam . welding was demonstrated. Additionally, a new invention the Plasma Shield (US Patent number 7,075,030) that chemically and thermally shields a target object was set forth. Great interest in the new technology was shown by a number of industries and three arcs were sold for experimental use. However, the welding industry requested demonstration of high speed welding, which requires 100 kW electron beam welders. The cost of such a welder involved the need for additional funding. Therefore, some of the effort was directed towards Plasma Shield development. Although relatively a small portion of the R&D effort was spent on the Plasma Shield, some very encouraging results were obtained. Inair Plasma Shield was demonstrated. With only a partial shield, enhanced vacuum separation and cleaner welds were realized. And, electron beam propagation in atmosphere improved by a factor of about 3. Benefits to industry are the introduction of two new technologies. BNL benefited from licensing fee cash, from partial payment for employee salary, and from a new patent In addition to financial benefits, a new technology for physics studies was developed. Recommendations for future work are to develop an under-water plasma shield, perform welding with high-power electron beam:s, carry out other plasma shielded electron beam and ...
Date: January 31, 2007
Creator: Hershcovitch, Ady
Partner: UNT Libraries Government Documents Department

Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress

Description: Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.
Date: August 1, 2011
Creator: Klingsporn, P.E.
Partner: UNT Libraries Government Documents Department

Material Design, Selection, and Manufacturing Methods for System Sustainment

Description: This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.
Date: February 18, 2010
Creator: David Sowder, Jim Lula, Curtis Marshall
Partner: UNT Libraries Government Documents Department

UV laser ablation of parylene films from gold substrates

Description: Parylene films, coating gold substrates, were removed by laser ablation using 248 nm light from an excimer laser. Each sample was processed by a different number of pulses in one of three different environments: air at atmospheric pressure, nitrogen at atmospheric pressure, and vacuum. The laser-induced craters were analyzed by optical microscopy and x-ray photoelectron spectroscopy. Multi-pulse ablation thresholds of gold and parylene were estimated.
Date: November 19, 2009
Creator: Musaev, O. R.; Scott, P.; Wrobel, J. M. & Kruger, M. B.
Partner: UNT Libraries Government Documents Department

Microstructural Characterization of 6061 Aluminum to 304L Stainless Steel Inertia Welds

Description: 'Microstructural characterization of 6061-T6 aluminum-to-Type 304L stainless steel inertia welds provided a technical basis to conclude that transition joints fabricated from such welds should satisfactorily contain helium/hydrogen gas mixtures. This conclusion is based on the lack of semi-continuous alignments of particles and/or inclusions at, or near, the aluminum-to-stainless steel interface. These dissimilar metal transition joints play a key role in the operation of an accelerator driven, spallation neutron source designed for the production of tritium. The Accelerator Production of Tritium system will produce tritium through neutron interactions with 3He gas contained in water-cooled, 6061-T6 aluminum pressure tubes. Current design concepts include thousands of thin-walled pressure tubes distributed throughout a number of aluminum-clad, lead-filled, blanket modules. The aluminum pressure tubes are connected to a tritium extraction and purification system through a stainless steel manifold. The transition from aluminum to stainless steel is made via transition joints machined from the aluminum-to-stainless steel inertia welds. The paper describes the baseline microstructural characterization of the welds, including optical, scanning and transmission electron microscopy and uses that characterization to evaluate potential gas leakage across the weld.'
Date: September 29, 1999
Creator: Dunn, K.A.
Partner: UNT Libraries Government Documents Department

Tabulation, bibliography, and structure of binary intermetallic compounds. III. Compounds of copper, silver and gold

Description: A review is given of the various transverse thermomagnetic and galvanomagnetic effects. The coefficicnts and relations between coefficients are listed for both metals and semiconductors. A quantitative annlysis is given of the error in Hall effcct measurements owing to non-isothermal conditions. (auth)
Date: September 9, 1957
Creator: Klepfer, H. H. & Shoemaker, H. E.
Partner: UNT Libraries Government Documents Department

High temperature allotropy and thermal expansion of the rare-earth metals

Description: By means of high temperature X-ray techniques the crystal structure of lanthanum, cerium, praseodymium, neodymium, ytterbium, and possibly gadolinium was found to be body-centered cubic at temperatures near their respective melting points. For ytterbium a hexagonal close-packed structure was also observed, which was shown to be stabilized by atmospheric impurities. Evidence for possible high temperature crystalline transformations in gadolinium, terbium, dysprosium, holmium, and lutetium was obtained by means of electrical resistance measurements; erbium gave no such evidence. X-ray data were used to derive empirical equations which describe thermal expansions coefficients of scandium, yttrium and the rare-earth metals. Europium exhibits a rapidly decreasing coefficient of expansion with increasing temperature, which may be a consequence of a gradual promotion of one of the 4f electrons into the conduction band. The hexagonal rare-earth metals were found to have nearly the same axial ratio at their respective transformation temperatures.
Date: August 17, 1960
Creator: Spedding, F. H.; Hanak, J. J. & Daane, A. H.
Partner: UNT Libraries Government Documents Department

Force Field Parameter Estimation of Functional Perfluoropolyether Lubricants

Description: The head disk interface in hard disk drive can be considered one of the hierarchical multiscale systems, which require the hybridization of multiscale modeling methods with coarse-graining procedure. However, the fundamental force field parameters are required to enable the coarse-graining procedure from atomistic/molecular scale to mesoscale models .In this paper, we investigate beyond molecular level and perform ab-initio calculations to obtain the force field parameters. Intramolecular force field parameters for the Zdol and Ztetraol were evaluated with truncated PFPE molecules to allow for feasible quantum calculations while still maintaining the characteristic chemical structure of the end groups. Using the harmonic approximation to the bond and angle potentials, the parameters were derived from the Hessian matrix, and the dihedral force constants are fit to the torsional energy profiles generated by a series of constrained molecular geometry optimization.
Date: January 1, 2011
Creator: Smith, R.; Chung, P.S; Steckel, J.A.; Jhon, M.S & Biegler, L.T.
Partner: UNT Libraries Government Documents Department

Hydrogen Dissociation on Pd4S Surfaces

Description: Exposure of Pd-based hydrogen purification membranes to H,S. a common contaminant in coal gasification streams, can cause membrane performance to deteriorate, either by deactivating surface sites required for dissociative H, adsorption or by forming a low-permeability sulfide scale. In this work. the composition, structure, and catalytic activity of Pd4S, a surface scale commonly observed in Pd-membrane separation of hydrogen from sulfur-containing gas streams, were examined using a combination of experimental characterization and density functional theory (DFT) calculations. A Pd,S sample was prepared by exposing a 100 f1m Pd foil to H2S at 908 K. Both X-ray photoemission depth profiling and low energy ion scattering spectroscopic (LEISS) analysis reveal slight sulfur-enrichment of the top surface of the sample. This view is consistent with the predictions of DFT atomistic thermodynamic calculations. which identified S-terminated Pd,S surfaces as energetically favored over corresponding Pd-terminated surfaces. Activation barriers for H2 dissociation on the Pd,S surfaces were calculated. Although barriers are higher than on Pd(lll). transition state theory analysis identified reaction pathways on the S-terminated surfaces for which hydrogen dissociation rates are high enough to sustain the separation process at conditions relevant to gasification applications.
Date: January 1, 2009
Creator: Miller, J.B.; Alfonso, D.R.; Howard, B.H.; O'Brien, C.P. & Morreale, B.D.
Partner: UNT Libraries Government Documents Department

Density functional theory study of mercury adsorption on metal surfaces

Description: Density functional theory #1;DFT#2; calculations are used to characterize the interaction of mercury with copper, nickel, palladium, platinum, silver, and gold surfaces. Mercury binds relatively strongly to all the metal surfaces studied, with binding energies up to #3;1 eV for Pt and Pd. DFT calculations underestimate the energy of adsorption with respect to available experimental data. Plane-wave DFT results using the local density approximation and the Perdew-Wang 1991 and Perdew-Burke-Ernzerhof parametrizations of the generalized gradient approximation indicate that binding of mercury at hollow sites is preferred over binding at top or bridge sites. The interaction with mercury in order of increasing reactivity over the six metals studied is Ag #1;Au#1;Cu#1;Ni#1;Pt#1;Pd. Binding is stronger on the #1;001#2; faces of the metal surfaces, where mercury is situated in fourfold hollow sites as opposed to the threefold hollow sites on #1;111#2; faces. In general, mercury adsorption leads to decreases in the work function; adsorbate-induced work function changes are particularly dramatic on Pt.
Date: January 1, 2008
Creator: Steckel, J.A.
Partner: UNT Libraries Government Documents Department

Characterization of Mo/Si multilayer growth on stepped topographies

Description: Mo/Si multilayer mirrors with nanoscale bilayer thicknesses have been deposited on stepped substrate topographies, using various deposition angles. The multilayer morphology at the stepedge region was studied by cross section transmission electron microscopy. A transition from a continuous- to columnar layer morphology is observed near the step-edge, as a function of the local angle of incidence of the deposition flux. Taking into account the corresponding kinetics and anisotropy in layer growth, a continuum model has been developed to give a detailed description of the height profiles of the individual continuous layers. Complementary optical characterization of the multilayer system using a microscope operating in the extreme ultraviolet wavelength range, revealed that the influence of the step-edge on the planar multilayer structure is restricted to a region within 300 nm from the step-edge.
Date: August 31, 2011
Creator: van den Boogaard, A. J. R.; Louis, E.; Zoethout, E.; Goldberg, K. A. & Bijkerk, F.
Partner: UNT Libraries Government Documents Department

Effect of Grain Size on the Acoustic Emission Generated During Plastic Deformation of Aluminum

Description: Acoustic emission signals from polycrystalline Al 1100 samples during plastic deformation were analyzed with respect to the strain rate and grain size. A kinematic model is proposed to account for the observed behavior. An experimental acoustic emission parameter, equivalent to the average energy of the acoustic events, correlates satisfactorily with the computed energy of moving dislocations during the deformation process. Both energies attain a maximum value for a certain grain size, and are directly dependent on the strain rate.
Date: December 1, 1979
Creator: Baram, J. & Rosen, M.
Partner: UNT Libraries Government Documents Department

Correlation of Failure Times for Iodine SCC of Zircaloy

Description: A crack-growth model of stress corrosion cracking has been successfully applied to predict times-to-failure of zircaloy specimens exposed to iodine vapor. Data for two types of tests were analyzed using the model. The first was a variable loading experiment in which failure occurred after the specimen had been subjected to two distinct stresses in succession. The second was a series of tests in which surface roughness, and probably residual stress as well, was reduced by chemical polishing of the specimens. The success of the crack growth model in dealing with these situations suggests that crack propagation rather than crack initiation is the rate-controlling step in iodine stress corrosion cracking of zircaloy. Furthermore, the metal in the vicinity of the growing crack is apparently so embrittled by iodine that a model originally intended for ceramics applies.
Date: November 1, 1980
Creator: Shann, S. & Olander, D. R.
Partner: UNT Libraries Government Documents Department

Ferrite Structure and Mechanical Properties of Low Alloy Duplex Steels

Description: The purpose of this communication is threefold. 1) To confirm the presence of and to characterize the precipitates in the ferrite phase of the base + Nb and base + Mo steels, 2) to study any possible variation in precipitate density as the martensitic volume fraction is changed and 3) to determine the level of precipitation strengthening.
Date: April 1, 1981
Creator: Hoel, R. H. & Thomas, G.
Partner: UNT Libraries Government Documents Department