28 Matching Results

Search Results

Advanced search parameters have been applied.

Report on the workshop "Decay spectroscopy at CARIBU: advanced fuel cycle applications, nuclear structure and astrophysics". 14-16 April 2011, Argonne National Laboratory, USA.

Description: A workshop on 'Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics' will be held at Argonne National Laboratory on April 14-16, 2011. The aim of the workshop is to discuss opportunities for decay studies at the Californium Rare Isotope Breeder Upgrade (CARIBU) of the ATLAS facility with emphasis on advanced fuel cycle (AFC) applications, nuclear structure and astrophysics research. The workshop will consist of review and contributed talks. Presentations by members of the local groups, outlining the status of relevant in-house projects and availabile equipment, will also be organized. time will also be set aside to discuss and develop working collaborations for future decay studies at CARIBU. Topics of interest include: (1) Decay data of relevance to AFC applications with emphasis on reactor decay heat; (2) Discrete high-resolution gamma-ray spectroscopy following radioactive decya and related topics; (3) Calorimetric studies of neutron-rich fission framgents using Total ABsorption Gamma-Ray Spectrometry (TAGS) technique; (4) Beta-delayed neutron emissions and related topics; and (5) Decay data needs for nuclear astrophysics.
Date: October 6, 2011
Creator: Kondev, F.; Carpenter, M.P.; Chowdhury, P.; Clark, J.A.; Lister, C.J.; Nichols, A.L. et al.
Partner: UNT Libraries Government Documents Department

Closed ThUOX Fuel Cycle for LWRs with ADTT (ATW) Backend for the 21st Century

Description: A future nuclear energy scenario with a closed, thorium-uranium-oxide (ThUOX) fuel cycle and new light water reactors (TULWRs) supported by Accelerator Transmutation of Waste (ATW) systems could provide several improvements beyond today's once-through, UO{sub 2}-fueled nuclear technology. A deployment scenario with TULWRs plus ATWs to burn the actinides produced by these LWRs and to close the back-end of the ThUOX fuel cycle was modeled to satisfy a US demand that increases linearly from 80 GWe in 2020 to 200 GWe by 2100. During the first 20 years of the scenario (2000-2020), nuclear energy production in the US declines from today's 100 GWe to about 80 GWe, in accordance with forecasts of the US DOE's Energy Information Administration. No new nuclear systems are added during this declining nuclear energy period, and all existing LWRs are shut down by 2045. Beginning in 2020, ATWs that transmute the actinides from existing LWRs are deployed, along with TULWRs and additional ATWs with a support ratio of 1 ATW to 7 TULWRs to meet the energy demand scenario. A final mix of 174 GWe from TULWRs and 26 GWe from ATWs provides the 200 GWe demand in 2100. Compared to a once-through LWR scenario that meets the same energy demand, the TULWR/ATW concept could result in the following improvements: depletion of natural uranium resources would be reduced by 50%; inventories of Pu which may result in weapons proliferation will be reduced in quantity by more than 98% and in quality because of higher neutron emissions and 50 times the alpha-decay heating of weapons-grade plutonium; actinides (and possibly fission products) for final disposal in nuclear waste would be substantially reduced; and the cost of fuel and the fuel cycle may be 20-30% less than the once-through UO{sub 2} fuel cycle.
Date: October 6, 1998
Creator: Beller, D.E.; Sailor, W.C. & Venneri, F.
Partner: UNT Libraries Government Documents Department

GOTHIC MODEL OF BWR SECONDARY CONTAINMENT DRAWDOWN ANALYSES

Description: This article introduces a GOTHIC version 7.1 model of the Secondary Containment Reactor Building Post LOCA drawdown analysis for a BWR. GOTHIC is an EPRI sponsored thermal hydraulic code. This analysis is required by the Utility to demonstrate an ability to restore and maintain the Secondary Containment Reactor Building negative pressure condition. The technical and regulatory issues associated with this modeling are presented. The analysis includes the affect of wind, elevation and thermal impacts on pressure conditions. The model includes a multiple volume representation which includes the spent fuel pool. In addition, heat sources and sinks are modeled as one dimensional heat conductors. The leakage into the building is modeled to include both laminar as well as turbulent behavior as established by actual plant test data. The GOTHIC code provides components to model heat exchangers used to provide fuel pool cooling as well as area cooling via air coolers. The results of the evaluation are used to demonstrate the time that the Reactor Building is at a pressure that exceeds external conditions. This time period is established with the GOTHIC model based on the worst case pressure conditions on the building. For this time period the Utility must assume the primary containment leakage goes directly to the environment. Once the building pressure is restored below outside conditions the release to the environment can be credited as a filtered release.
Date: October 6, 2004
Creator: Hansen, P.N.
Partner: UNT Libraries Government Documents Department

Design of a boiling water reactor equilibrium core using thorium-uranium fuel

Description: In this paper the design of a Boiling Water Reactor (BWR) equilibrium core using thorium is presented; a heterogeneous blanket-seed core arrangement concept was adopted. The design was developed in three steps: in the first step two different assemblies were designed based on the integrated blanket-seed concept, they are the blanket-dummy assembly and the blanket-seed assembly. The integrated blanketseed concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned-out in a once-through cycle. In the second step, a core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the assembly. In the third step an in-house code was developed to evaluate the thorium equilibrium core under transient conditions. A stability analysis was also performed. Regarding the stability analysis, five operational states were analyzed; four of them define the traditional instability region corner of the power-flow map and the fifth one is the operational state for the full power condition. The frequency and the boiling length were calculated for each operational state. The frequency of the analyzed operational states was similar to that reported for BWRs; these are close to the unstable region that occurs due to the density wave oscillation phenomena in some nuclear power plants. Four transient analyses were also performed: manual SCRAM, recirculation pumps trip, main steam ...
Date: October 6, 2004
Creator: Francois, J-L.; Nunez-Carrera, A.; Espinosa-Paredes, G. & Martin-del-Campo, C.
Partner: UNT Libraries Government Documents Department

MONJU AS AN INTERNATIONAL ASSET: INTERNATIONAL ASSISTANCE AND COOPERATION

Description: The role of the fast breeder reactor prototype Monju has expanded to meet the challenges of the 21st century. Today instead of being merely a demonstration of an economical, safe, environmentally responsible source of energy, as originally designed, it has also the capability to be transformed into a unique International Irradiations Test Facility. The potential for Monju's role in the Generation IV nuclear energy systems development, and fast reactor research and development area is clear. Its incomparable fast neutron spectrum density will be a major interest not only for Sodium Fast Reactor but for all the Generation IV concepts. As Monju's potential future role is laid out, plans for future tests can be made. Tests of advanced fuels and materials in support of the Advanced Fuel Cycle Initiative, as well as Minor Actinide Burning can be envisaged. Tests planned on transmutation of minor actinides have the objectives of an industrial demonstration of the reduction of toxic wastes and the stewardship burden of the long-lived wastes. Tests and demonstrations carried out at Monju will provide a bridge from existing Generation III fast reactor systems, now in the later stages of their projected operational lifetimes, to Generation IV nuclear energy systems. The JNC founded the International Cooperation and Technology Development Center and the International Research Fellowship program to facilitate this international effort. The Center exists specifically to formulate and perform projects ensuring the maximum technical benefit from Monju. The staff includes physicists, engineers and nuclear industry leaders from around the world. Research Fellowships center is based on several technical areas: advanced instrumentation, inspection techniques, plant reliability and safety, nucleonics, sodium handling technologies, irradiation and experiment management and coordination and advanced post-irradiation examination capabilities and techniques. This paper describes the recent involvement of three international researchers from the USA, France and the UK ...
Date: October 6, 2004
Creator: Rodriguez, G.; Wisner, R.S. & Stuart, R.
Partner: UNT Libraries Government Documents Department

TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

Description: The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations.
Date: October 6, 2004
Creator: Grover, S.B.
Partner: UNT Libraries Government Documents Department

Guidance for Nuclear Power Plant Control Room and Human-System Interface Modernization

Description: Several nuclear power plants in the United States are starting instrumentation and control (I&C) modernization programs using digital equipment to address obsolescence issues and the need to improve plant performance while maintaining high levels of safety. As an integral part of the I&C modernization program at a nuclear power plant, the control room and other human-system interfaces (HSIs) are also being modernized. To support safe and effective operation, it is critical to plan, design, implement, train for, operate, and maintain the control room and HSI changes to take advantage of human cognitive processing abilities. A project, jointly funded by the Electric Power Research Institute (EPRI) and the United States Department of Energy (DOE) under the Nuclear Energy Plant Optimization (NEPO) Program, is developing guidance for specifying and designing control rooms, remote shut-down panels, HSIs etc. The guidance is intended for application by utilities and suppliers of control room and HSI modernization. The guidance will facilitate specification, design, implementation, operations, maintenance, training, and licensing activities. This guidance will be used to reduce the likelihood of human errors and licensing risk, to gain maximum benefit of implemented technology, and to increase performance. The guidance is of five types. The first is planning guidance to help a utility develop its plant-specific control room operating concepts, its plant-specific endpoint vision for the control room, its migration path to achieve that endpoint vision, and its regulatory, licensing, and human factors program plans. The second is process guidance for general HSI design and integration, human factors engineering analyses, verification and validation, in-service monitoring processes, etc. The third is detailed human factors engineering guidance for control room and HSI technical areas. The fourth is guidance for licensing. The fifth is guidance for special topics related to operations and maintenance including training and simulation and safety monitoring and ...
Date: October 6, 2004
Creator: Naser, J. & Morris, G.
Partner: UNT Libraries Government Documents Department

Current Status and the Future of the Irradiation Services in the HANARO Reactor

Description: As a central plant of the Korea Atomic Energy Research Institute, Hi-flux Advanced Neutron Application Reactor, the HANARO, has been playing an important role in nuclear technology development and the utilization of radiation technology. HANARO's reputation such as a stable operation, build up of various research results and the support of the government picks up more research needs. Major utilizations of the HANARO reactor in Korea have focused on its irradiation service. It offers various types of irradiation tests for fuel and materials, which provides us with very useful information for designing and evaluating reactor materials. A number of irradiation capsules have been developed and installed in HANARO. Necessary technologies regarding HANARO are still being developed. The on-going and future researches, especially, about fuel and material irradiation including university programs and the current utilization statistics of the HANARO research reactor, are described in this article.
Date: October 6, 2004
Creator: Kang, Y-H.; Kim, B-G.; Cho, M-S.; Choo, K-N. & Kim, Y-J.
Partner: UNT Libraries Government Documents Department

Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario

Description: In the case of new nuclear power stations, it is necessary to pay special attention to the financial strategy that will be applied, time of construction, investment cost, and the discount and return rate. The levelized cost quantifies the unitary cost of the electricity (the kWh) generated during the lifetime of the nuclear power plant; and allows the immediate comparison with the cost of other alternative technologies. The present paper shows levelized cost for different nuclear technologies and it provides comparison among them as well as with gas and coal electricity plants. For the calculations we applied our own methodology to evaluate the levelized cost considering investment, fuel and operation and maintenance costs, making assumptions for the Mexican market, and taking into account the gas prices projections. The study also shows comparisons using different discount rates (5% and 10%), and some comparisons between our results and an OECD 1998 study. The results are i n good agreement and shows that nuclear option is cost competitive in Mexico on the basis of levelized costs.
Date: October 6, 2004
Creator: Palacios, J.C.; Alonso, G.; Ramirez, R.; Gomez, A.; Ortiz, J. & Longoria, L.C.
Partner: UNT Libraries Government Documents Department

Cogeneration of Electricity and Potable Water Using The International Reactor Innovative And Secure (IRIS) Design

Description: The worldwide demand for potable water has been steadily growing and is projected to accelerate, driven by a continued population growth and industrialization of emerging countries. This growth is reflected in a recent market survey by the World Resources Institute, which shows a doubling in the installed capacity of seawater desalination plants every ten years. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh/m3 of produced desalted water. At current U.S. water use rates, a dedicated 1000 MW power plant for every one million people would be required to meet our water needs with desalted water. Nuclear energy plants are attractive for large scale desalination application. The thermal energy produced in a nuclear plant can provide both electricity and desalted water without the production of greenhouse gases. A particularly attractive option for nuclear desalination is to couple a desalination plant with an advanced, modular, passively safe reactor design. The use of small-to-medium sized nuclear power plants allows for countries with smaller electrical grid needs and infrastructure to add new electrical and water capacity in more appropriate increments and allows countries to consider siting plants at a broader number of distributed locations. To meet these needs, a modified version of the International Reactor Innovative and Secure (IRIS) nuclear power plant design has been developed for the cogeneration of electricity and desalted water. The modular, passively safe features of IRIS make it especially well adapted for this application. Furthermore, several design features of the IRIS reactor will ensure a safe and reliable source of energy and water even for countries with limited nuclear power experience and infrastructure. The IRIS-D design utilizes low-quality steam extracted from the low-pressure turbine to boil seawater in a multi-effect distillation desalination plant. The desalination plant is based on the horizontal tube film evaporation design ...
Date: October 6, 2004
Creator: Ingersoll, D.T.; Binder, J.L.; Kostin, V.I.; Panov, Y.K.; Polunichev, V.; Ricotti, M.E. et al.
Partner: UNT Libraries Government Documents Department

The Conceptual Design for a Fuel Assembly of a New Research Reactor

Description: A new Research Reactor (ARR) has been under design by KAERI since 2002. In this work, as a first step for the design of the fuel assembly of the ARR, the conceptual design has been carried out. The vibration characteristics of the tubular fuel model and the locking performance of the preliminary designed locking devices were investigated. In order to investigate the effects of the stiffener on the vibration characteristics of the tubular fuel, a modal analysis was performed for the finite element models of the tubular fuels with stiffeners and without stiffeners. The analysis results show that the vibration characteristics of the tubular fuel with stiffeners are better than those of the tubular fuel without stiffeners. To investigate the locking performance of the preliminary designed locking devices for the fuel assembly of the ARR, the elements of the locking devices were fabricated. Then the torsional resistance, fixing status and vibration characteristics of the locking devices were tested. The test results show that using the locking device with fins on the bottom guide can prevent the torsional motion of the fuel assembly, and that additional springs or guides on the top of the fuel assembly are needed to suppress the lateral motion of the fuel assembly. Based on the modal analysis and experimental results, the fuel assembly and locking devices of the ARR were designed and its prototype was fabricated. The locking performance, pressure drop characteristics and vibration characteristics of the newly designed fuel assembly will be tested in the near future.
Date: October 6, 2004
Creator: Ryu, J-S.; Cho, Y-G.; Yoon, D-B.; Dan, H-J.; Chae, H-T. & Park, C.
Partner: UNT Libraries Government Documents Department

3-D THERMAL EVALUATIONS FOR a FUELED EXPERIMENT in the ADVANCED TEST REACTOR

Description: The DOE Advanced Fuel Cycle Initiative and Generation IV reactor programs are developing new fuel types for use in the current Light Water Reactors and future advanced reactor concepts. The Advanced Gas Reactor program is planning to test fuel to be used in the Next Generation Nuclear Plant (NGNP) nuclear reactor. Preliminary information for assessing performance of the fuel will be obtained from irradiations performed in the Advanced Test Reactor large ''B'' experimental facility. A test configuration has been identified for demonstrating fuel types typical of gas cooled reactors or fast reactors that may play a role in closing the fuel cycle or increasing efficiency via high temperature operation Plans are to have 6 capsules, each containing 12 compacts, for the test configuration. Each capsule will have its own temperature control system. Passing a helium-neon gas through the void regions between the fuel compacts and the graphite carrier and between the graphite carrier and the capsule wall will control temperature. This design with three compacts per axial level was evaluated for thermal performance to ascertain the temperature distributions in the capsule and test specimens with heating rates that encompass the range of initial heat generation rates.
Date: October 6, 2004
Creator: Ambrosek, R. G.; Chang, G. S. & Utterbeck, D. J.
Partner: UNT Libraries Government Documents Department

MARS, 600 MWth NUCLEAR POWER PLANT

Description: MARS (Multipurpose Advanced Reactor, inherently Safe) is a 600 MWth, single loop, pressurized light water reactor (PWR), developed at the Dept. of Nuclear Engineering and Energy Conversion of the University of Rome ''La Sapienza''. The design was focused to a multipurpose reactor to be used in high population density areas also for industrial heat production and, in particular, for water desalting. Using the well-proven technology and the operation experience of PWRs, the project introduces a lot of innovative features hugely improving the safety performance while keeping the cost of KWh competitive with traditional large power plants. Extensive use of passive safety, in depth plant simplification and decommissioning oriented design were the guidelines along the design development. The latest development in the plant design, in the decommissioning aspects and in the experimental activities supporting the project are shown in this paper.
Date: October 6, 2004
Creator: Cumo, M.; Naviglio, A. & Sorabella, L.
Partner: UNT Libraries Government Documents Department

Participation of the Nuclear Power Plants in the New Brazilian Electric Energy Market

Description: A new regulation framework has been established for the Brazilian electric energy market by a law put into effect on March 15,2004. The main overall goals of this new regulation are: to allow the lowest possible tariffs for end users, while providing the necessary economic incentives for the operation of present installations (generating plants, transmission lines, distribution networks) and the expansion of the system; long-term planning of the extension of the installations required to meet the demand growth; separation of the generation, transmission and distribution activities by allocating them into different companies; new contracts between generating and distribution companies must result from bidding processes based on lowest-tariff criteria; and energy from new generating units required to meet the demand growth must be contracted by all distributing companies integrated to the National Interconnected Grid, in individual amounts proportional to their respective markets.
Date: October 6, 2004
Creator: Mathias, S.G.
Partner: UNT Libraries Government Documents Department

Applications of the 3-D Deterministic Transport Attila{reg_sign} for Core Safety Analysis

Description: An LDRD (Laboratory Directed Research and Development) project is ongoing at the Idaho National Engineering and Environmental Laboratory (INEEL) for applying the three-dimensional multi-group deterministic neutron transport code (Attila{reg_sign}) to criticality, flux and depletion calculations of the Advanced Test Reactor (ATR). This paper discusses the model development, capabilities of Attila, generation of the cross-section libraries, and comparisons to an ATR MCNP model and future.
Date: October 6, 2004
Creator: Lucas, D.S.; Gougar, D.; Roth, P.A.; Wareing, T.; Failla, G.; McGhee, J. et al.
Partner: UNT Libraries Government Documents Department

Development of a Monolithic Research Reactor Fuel Type at Argonne National Laboratory

Description: The Reduced Enrichment for Research and Test Reactors (RERTR) program has been tasked with the conversion of research reactors from highly enriched to low-enriched uranium (LEU). To convert several high power reactors, monolithic fuel, a new fuel type, is being developed. This fuel type replaces the standard fuel dispersion with a fuel alloy foil, which allows for fuel densities far in excess of that found in dispersion fuel. The single-piece fuel foil also contains a significantly lower interface area between the fuel and the aluminum in the plate than the standard fuel type, limiting the amount of detrimental fuel-aluminum interaction that can occur. Implementation of monolithic fuel is dependant on the development of a suitable fabrication method as traditional roll-bonding techniques are inadequate.
Date: October 6, 2004
Creator: Clark, C.R. & Briggs, R.J.
Partner: UNT Libraries Government Documents Department

The Optimum Plutonium Inert Matrix Fuel Form for Reactor-Based Plutonium Disposition

Description: The University of Florida has underway an ongoing research program to validate the economic, operational and performance benefits of developing an inert matrix fuel (IMF) for the disposition of the U.S. weapons plutonium (Pu) and for the recycle of reprocessed Pu. The current fuel form of choice for Pu disposition for the Department of Energy is as a mixed oxide (MOX) (PuO2/UO2). We will show analyses that demonstrate that a Silicon Carbide (SiC) IMF offers improved performance capabilities as a fuel form for Pu recycle and disposition. The reason that UF is reviewing various materials to serve as an inert matrix fuel is that an IMF fuel form can offer greatly reduced Pu and transuranic isotope (TRU) production and also improved thermal performance characteristics. Our studies showed that the Pu content is reduced by an order of magnitude while centerline fuel temperatures are reduced approximately 380 degrees centigrade compared to MOX. These reduced temperatures result in reduced stored heat and thermal stresses in the pellet. The reduced stored heat reduces the consequences of the loss of coolant accident, while the reduced temperatures and thermal stresses yield greatly improved fuel performance. Silicon Carbide is not new to the nuclear industry, being a basic fuel material in gas cooled reactors.
Date: October 6, 2004
Creator: Tulenko, J.S.; Wang, J. & Acosta, C.
Partner: UNT Libraries Government Documents Department

Failed MTR Fuel Element Detect in a Sipping Tests

Description: This work describes sipping tests performed on Material Testing Reactor (MTR) fuel elements of the IEA-R1 research reactor, in order to find out which one failed in the core during a routine operation. Radioactive iodine isotopes {sup 131}I and {sup 133}I, employed as failure monitors, were detected in samples corresponding to the failed fuel element. The specific activity of each sample, as well as the average leaking rate, were measured for {sup 137}Cs. The nuclear fuels U{sub 3}O{sub 8} - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of {sup 137}Cs.
Date: October 6, 2004
Creator: Zeituni, C.A.; Terremoto, L.A.A. & da Silva, J.E.R.
Partner: UNT Libraries Government Documents Department

Development of a Methodology to Assess Proliferation Resistance and Physical Protection for Generation IV Systems

Description: Enhanced proliferation resistance and physical protection (PR&PP) is one of the technology goals for advanced nuclear concepts, such as Generation IV systems. Under the auspices of the Generation IV International Forum, the Office of Nuclear Energy, Science and Technology of the U.S. DOE, the Office of Nonproliferation Policy of the National Nuclear Security Administration, and participating organizations from six other countries are sponsoring an international working group to develop an evaluation methodology for PR&PP. This methodology will permit an objective PR&PP comparison between alternative nuclear systems (e.g., different reactor types or fuel cycles) and support design optimization to enhance robustness against proliferation, theft and sabotage. The paper summarizes the proposed assessment methodology including the assessment framework, measures used to express the PR&PP characteristics of the system, threat definition, system element and target identification, pathway identification and analysis, and estimation of the measures.
Date: October 6, 2004
Creator: Nishimura, R.; Bari, R.; Peterson, P.; Roglans-Ribas, J. & Kalenchuk, D.
Partner: UNT Libraries Government Documents Department