7,474 Matching Results

Search Results

Advanced search parameters have been applied.

Preliminary Saturated-Zone Flow Model

Description: This milestone consists of an updated fully 3D model of ground-water flow within the saturated zone at Yucca Mountain, Nevada. All electronic files pertaining to this deliverable have been transferred via ftp transmission to Steve Bodnar (M and O) and the technical data base. The model was developed using a flow and transport simulator, FEHMN, developed at Los Alamos National Laboratory, and represents a collaborative effort between staff from the US Geological Survey and Los Alamos National Laboratory. The model contained in this deliverable is minimally calibrated and represents work in progress. The flow model developed for this milestone is designed to feed subsequent transport modeling studies at Los Alamos which also use the FEHMN software. In addition, a general-application parameter estimation routine, PEST, was used in conjunction with FEHMN to reduce the difference between observed and simulated values of hydraulic head through the adjustment of model variables. This deliverable in large part consists of the electronic files for Yucca Mountain Site saturated-zone flow model as it existed as of 6/6/97, including the executable version of FEHMN (accession no. MOL.19970610.0204) used to run the code on a Sun Ultrasparc I workstation. It is expected that users of the contents of this deliverable be knowledgeable about the oration of FEHMN.
Date: June 10, 1997
Partner: UNT Libraries Government Documents Department

Repository Safety Strategy: Strategy for Protecting Public Health and Safety after Closure of a Yucca Mountain Repository, Rev. 1

Description: The updated Strategy to Protect Public Health and Safety explains the roles that the natural and engineered systems are expected to play in achieving the objectives of a potential repository system at Yucca Mountain. These objectives are to contain the radionuclides within the waste packages for thousands of years, and to ensure that annual doses to a person living near the site will be acceptably low. This strategy maintains the key assumption of the Site Characterization Plan (DOE 1988) strategy that the potential repository level (horizon) will remain unsaturated. Thus, the strategy continues to rely on the natural attributes of the unsaturated zone for primary protection by providing a setting where waste packages assisted by other engineered barriers are expected to contain wastes for thousands of years. As in the Site Characterization Plan (DOE 1988) strategy, the natural system from the walls of the underground openings (drifts) to the human environment is expected to provide additional defense by reducing the concentrations of any radionuclides released from the waste packages. The updated Strategy to Protect Public Health and Safety is the framework for the integration of site information, repository design and assessment of postclosure performance to develop a safety case for the viability assessment and a subsequent license application. Current site information and a reference design are used to develop a quantitative assessment of performance to be compared with a performance measure. Four key attributes of an unsaturated repository system that are critical to meeting the objectives: (1) Limited water contacting the waste packages; (2) Long waste package lifetime; (3) Slow rate of release of radionuclides from the waste form; and (4) Concentration reduction during transport through engineered and natural barriers.
Date: January 1, 1998
Creator: United States. Department of Energy.
Partner: UNT Libraries Government Documents Department

Mineralogic Model (MM3.0) Report

Description: The purpose of this report is to provide a three-dimensional (3-D) representation of the mineral abundance within the geologic framework model domain. The mineralogic model enables project personnel to estimate mineral abundances at any position, within the model region, and within any stratigraphic unit in the model area. The model provides the abundance and distribution of 10 minerals and mineral groups within 22 stratigraphic sequences or model layers in the Yucca Mountain area. The uncertainties and limitations associated with this model are discussed in Section 6.4. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7.
Date: September 7, 2004
Creator: Sanchez, A.
Partner: UNT Libraries Government Documents Department

Miscellaneous Waste-Form FEPs

Description: The US DOE must provide a reasonable assurance that the performance objectives for the Yucca Mountain Project (YMP) potential radioactive-waste repository can be achieved for a 10,000-year post-closure period. The guidance that mandates this direction is under the provisions of 10 CFR Part 63 and the US Department of Energy's ''Revised Interim Guidance Pending Issuance of New US Nuclear Regulatory Commission (NRC) Regulations (Revision 01, July 22, 1999), for Yucca Mountain, Nevada'' (Dyer 1999 and herein referred to as DOE's Interim Guidance). This assurance must be demonstrated in the form of a performance assessment that: (1) identifies the features, events, and processes (FEPs) that might affect the performance of the potential geologic repository; (2) examines the effects of such FEPs on the performance of the potential geologic repository; (3) estimates the expected annual dose to a specified receptor group; and (4) provides the technical basis for inclusion or exclusion of specific FEPs.
Date: December 8, 2000
Creator: Schenker, A.
Partner: UNT Libraries Government Documents Department

MODELING FLOW AND TRANSPORT PATHWAYS TO THE POTENTIAL REPOSITORY HORIZON AT YUCCA MOUNTAIN

Description: The isotopic ratios of {sup 36}Cl/Cl are used in conjunction with geologic interpretation and numerical modeling to evaluate flow and transport pathways, processes, and model parameters in the unsaturated zone at Yucca Mountain. By synthesizing geochemical and geologic data, the numerical model results provide insight into the validity of alternative hydrologic parameter sets, flow and transport processes in and away from fault zones, and the applicability of {sup 36}Cl/Cl. ratios for evaluating alternative conceptual models.
Date: March 4, 1998
Creator: A.V. WOLFSBERG, G.J.C. ROEMER, J.T. FABRYKA-MARTIN, B.A. ROBINSON
Partner: UNT Libraries Government Documents Department

The Chemical Hazards Assessment Prior to D&D of the Plutonium Finishing Plant, Hanford Nuclear Reservation

Description: This report describes the evaluation methods and results of a chemical safety status assessment of the process equipment at the U.S. Department of Energy Hanford Nuclear Reservation Plutonium Finishing Plant. This assessment, designated as the Plutonium Finishing Plant Residual Chemical Hazards Assessment, focused particular emphasis on the idle and inactive plant systems, though certain active areas also were examined to the extent that these were examined during a previous facility vulnerability assessment completed in 1999. The Plutonium Finishing Plant is located in the 200 West Area of the Hanford Nuclear Reservation that is situated in south central Washington State.
Date: February 26, 2003
Creator: Hopkins, A. M.; Prevette, S. S.; Sherwood, A. R.; Fitch, L. R.; Ranade, D. G. & Oldham, R. W.
Partner: UNT Libraries Government Documents Department

An Evaluation of a Dual Coriolis Meter System for In-Line Monitoring of Suspended Solids Concentrations in Radioactive Slurries

Description: The U.S. Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes stored in underground tanks at several of its sites. In order to comply with various regulations and to circumvent potential problems associated with tank integrity, these wastes must be retrieved from the tanks, transferred to treatment facilities (or other storage locations), and processed to stable waste forms. The sludge wastes will typically be mobilized by some mechanical means (e.g., mixer pump, submerged jet) and mixed with the respective supernatants to create slurries that can be transferred by pipeline to the desired destination. Depending on the DOE site, these slurries may be transferred up to six miles. Since the wastes are radioactive, it is critically important for the transfers to be made without plugging a pipeline. To reduce such a risk, the relevant properties of the slurry (e.g., density, suspended solids concentration, viscosity, and particle size distribution) should be determined to be within acceptable limits prior to transfer. These properties should also be continuously monitored and controlled within specified limits while the transfer is in progress. The baseline method for determining the transport properties of slurries involves sampling and analysis; however, this method is time-consuming, and costly, and it does not provide real-time information. In addition, personnel who collect and analyze the samples are exposed to radiation. It is also questionable as to whether a laboratory analyst can obtain representative aliquots from the sample jar for these solid-liquid mixtures. The alternative method for determining the transport properties is in-line analysis. An in-line instrument is one that is connected to the process, analyzes the slurry as it flows through or by the instrument, and provides the results within seconds. This instrument can provide immediate feedback to operators so that, when necessary, the operators can respond quickly ...
Date: September 1, 2000
Creator: Hylton, T.D.
Partner: UNT Libraries Government Documents Department

MAJOR REPOSITORY DESIGN ISSUES

Description: The Yucca Mountain Project is focused on producing a four-part viability assessment in late FY98. Its four components (design, performance assessment, cost estimate, and licensing development plan) must be consistent. As a tool to compare design and performance assessment options, a series of repository pictures were developed for the sequential time phases of a repository. The boundaries of the time phases correspond to evolution in the engineered barrier system (EBS).
Date: November 10, 1997
Creator: JACK N. BAILEY, DWAYNE CHESTNUT, JAMES COMPTON AND RICHARD D. SNELL
Partner: UNT Libraries Government Documents Department

Saturated Zone Colloid Transport

Description: Colloid retardation is influenced by the attachment and detachment of colloids from immobile surfaces. This analysis demonstrates the development of parameters necessary to estimate attachment and detachment of colloids and, hence, retardation in both fractured tuff and porous alluvium. Field and experimental data specific to fractured tuff are used for the analysis of colloid retardation in fractured tuff. Experimental data specific to colloid transport in alluvial material from Yucca Mountain as well as bacteriophage field studies in alluvial material, which are thought to be good analogs for colloid transport, are used to estimate attachment and detachment of colloids in the alluvial material. There are no alternative scientific approaches or technical methods for calculating these retardation factors.
Date: September 5, 2003
Creator: Viswanathan, H. & Reimus, P.
Partner: UNT Libraries Government Documents Department

Effects of Uncertainty and Spatial Variability on Seepage into Drifts in the Yucca Mountain Total system Performance Assessment Model

Description: Seepage into the repository drifts is an important factor in total-system performance. Uncertainty and spatial variability are considered in the seepage calculations. The base-case results show 13.6% of the waste packages (WPs) have seepage. For 5th percentile uncertainty, 4.5% of the WPs have seepage and the seepage flow decreased by a factor of 2. For 95th percentile uncertainty, 21.5% of the WPs have seepage and the seepage flow increased by a factor of 2. Ignoring spatial variability resulted in seepage on 100% of the WPs, with a factor of 3 increase in the seepage flow.
Date: April 4, 2001
Creator: Kalinich, D. A. & Wilson, M. L.
Partner: UNT Libraries Government Documents Department

NaturAnalogs for the Unsaturated Zone

Description: The purpose of this Analysis/Model Report (AMR) is to document natural and anthropogenic (human-induced) analog sites and processes that are applicable to flow and transport processes expected to occur at the potential Yucca Mountain repository in order to build increased confidence in modeling processes of Unsaturated Zone (UZ) flow and transport. This AMR was prepared in accordance with ''AMR Development Plan for U0135, Natural Analogs for the UZ'' (CRWMS 1999a). Knowledge from analog sites and processes is used as corroborating information to test and build confidence in flow and transport models of Yucca Mountain, Nevada. This AMR supports the Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR) and the Yucca Mountain Site Description. The objectives of this AMR are to test and build confidence in the representation of UZ processes in numerical models utilized in the UZ Flow and Transport Model. This is accomplished by: (1) applying data from Boxy Canyon, Idaho in simulations of UZ flow using the same methodologies incorporated in the Yucca Mountain UZ Flow and Transport Model to assess the fracture-matrix interaction conceptual model; (2) Providing a preliminary basis for analysis of radionuclide transport at Pena Blanca, Mexico as an analog of radionuclide transport at Yucca Mountain; and (3) Synthesizing existing information from natural analog studies to provide corroborating evidence for representation of ambient and thermally coupled UZ flow and transport processes in the UZ Model.
Date: March 8, 2000
Creator: Simmons, A.; Unger, A. & Murrell, M.
Partner: UNT Libraries Government Documents Department

Subsurface Facility System Description Document

Description: The Subsurface Facility System encompasses the location, arrangement, size, and spacing of the underground openings. This subsurface system includes accesses, alcoves, and drifts. This system provides access to the underground, provides for the emplacement of waste packages, provides openings to allow safe and secure work conditions, and interfaces with the natural barrier. This system includes what is now the Exploratory Studies Facility. The Subsurface Facility System physical location and general arrangement help support the long-term waste isolation objectives of the repository. The Subsurface Facility System locates the repository openings away from main traces of major faults, away from exposure to erosion, above the probable maximum flood elevation, and above the water table. The general arrangement, size, and spacing of the emplacement drifts support disposal of the entire inventory of waste packages based on the emplacement strategy. The Subsurface Facility System provides access ramps to safely facilitate development and emplacement operations. The Subsurface Facility System supports the development and emplacement operations by providing subsurface space for such systems as ventilation, utilities, safety, monitoring, and transportation.
Date: July 31, 2001
Creator: Loros, Eric
Partner: UNT Libraries Government Documents Department

UZ Colloid Transport Model

Description: The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.
Date: April 13, 2000
Creator: McGraw, M.
Partner: UNT Libraries Government Documents Department

Understanding the Potential for Volcanoes at Yucca Mountain

Description: By studying the rocks and geologic features of an area, experts can assess whether it is vulnerable to future volcanic eruptions. Scientists have performed extensive studies at and near Yucca Mountain to determine whether future volcanoes could possibly affect the proposed repository for nuclear waste.
Date: August 1, 2002
Partner: UNT Libraries Government Documents Department