3,130 Matching Results

Search Results

Advanced search parameters have been applied.

Stability and Regeneration of Catalysts for the Destruction of Tars from Bio-mass Black Liquor Gasification

Description: The goal of this project was to develop catalytic materials and processes that would be effective in the destruction of tars formed during the gasification of black liquor and biomass. We report here the significant results obtained at the conclusion of this two year project.
Date: September 7, 2004
Creator: Agrawal, Pradeep
Partner: UNT Libraries Government Documents Department

Developments in enzyme immobilization and near-infrared Raman spectroscopy with downstream renewable energy applications

Description: This dissertation focuses on techniques for (1) increasing ethanol yields from saccharification and fermentation of cellulose using immobilized cellulase, and (2) the characterization and classification of lignocellulosic feedstocks, and quantification of useful parameters such as the syringyl/guaiacyl (S/G) lignin monomer content using 1064 nm dispersive multichannel Raman spectroscopy and chemometrics.
Date: August 27, 2012
Creator: Lupoi, Jason
Partner: UNT Libraries Government Documents Department

Rocks Filled with Tiny Spaces Can Turn Green Growing Things Into Stuff We Use Every Day

Description: Representing the Catalysis Center for Energy Innovation (CCEI), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of CCEI is to design and characterize novel catalysts for the efficient conversion of the complex molecules comprising biomass into chemicals and fuels.
Date: July 18, 2013
Creator: Nikbin, Nima; Josephson, Tyler & Courtney, Timothy
Partner: UNT Libraries Government Documents Department

Powering your car with sun light

Description: Representing the Center for Lignocellulose Structure and Formation (CLSF), this document is one of the entries in the Ten Hundred and One Word Challenge and was awarded "Overall Winner." As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of the CLSF is to dramatically increase our fundamental knowledge of the formation and physical interactions of bio-polymer networks in plant cell walls to provide a basis for improved methods for converting biomass into fuels.
Date: July 18, 2013
Creator: Cosgrove, Daniel; Brown, Nicole & Kiemle, Sarah
Partner: UNT Libraries Government Documents Department

Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations

Description: Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.
Date: January 1, 2012
Creator: Shi,Fan; Wang, Pin; Duan, Yuhua; Link, Dirk & Morreale, Bryan
Partner: UNT Libraries Government Documents Department


Description: The heptane extract of Euphorbia lathyris has a low oxygen content and a heat valve of 42 MJ/kg which is comparable to that of crude oil (44 MJ/kg). These qualities indicate a potential for use as fuel or chemical feedstock material. Therefore we have investigated the chemical composition of this fraction in some detail. Since the amoun of the methanol fraction is quite substantial we have also identified the major components of this fraction.
Date: October 1, 1980
Creator: Nemethy, E. K.; Otvos, J. W. & Calvin, M.
Partner: UNT Libraries Government Documents Department


Description: We have suggested that certain plants rich in hydrocarbon-like materials might be cultivated for renewable photosynthetic products. Two species were selected for experimental plantations: Euphorbia lathyris, an annual from seed and Euphorbia tirucalli, a perennial from cuttings, The yield from each species is over 10 barrels of oil/acre/year without genetic or agronomic improvement. In addition to plants, there are trees, such as species of Copaifera in Brazil and other tropical areas, which produce a diesel-like oil upon tapping. Each tree produces approximately 40 liters of hydrocarbon per year, and this material can be used directly by a diesel-powered car. Further efforts to develop plants as alternate energy sources are underway, as well as a continuing search for additional plant species throughout the world which have a similar capability.
Date: May 1, 1980
Creator: Calvin, Melvin
Partner: UNT Libraries Government Documents Department

Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil

Description: Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.
Date: July 14, 2011
Creator: DeAngelis, Kristen; Allgaier, Martin; Chavarria, Yaucin; Fortney, Julian; Hugenholtz, Phillip; Simmons, Blake et al.
Partner: UNT Libraries Government Documents Department

Final Scientific Report Pecos Valley Biomass Cooperative Project

Description: The goal of this study was to identify and select the best manure treatment technology to process manure form the 22 PVBC member dairies. It was determined that combustion of manure solids has potential, but it will be difficult to underwrite as the process has not been commercially proven.
Date: September 28, 2013
Creator: Collins, Kyle & Stoerrman, Mark
Partner: UNT Libraries Government Documents Department

Mill Seat Landfill Bioreactor Renewable Green Power (NY)

Description: The project was implemented at the Mill Seat landfill located in the Town of Bergen, Monroe County, New York. The landfill was previously equipped with a landfill gas collection system to collect methane gas produced by the bioreactor landfill and transport it to a central location for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.
Date: January 7, 2010
Creator: Barton & Loguidice, P.C.
Partner: UNT Libraries Government Documents Department


Description: A team composed of scientists from Michigan State University (MSU) and Michigan Technological University (MTU) assembled to better understand, document, and improve systems for using forest-based biomass feedstocks in the production of energy products within Michigan. Work was funded by a grant (DE-EE-0000280) from the U.S. Department of Energy (DOE) and was administered by the Michigan Economic Development Corporation (MEDC). The goal of the project was to improve the forest feedstock supply infrastructure to sustainably provide woody biomass for biofuel production in Michigan over the long-term. Work was divided into four broad areas with associated objectives: • TASK A: Develop a Forest-Based Biomass Assessment for Michigan – Define forest-based feedstock inventory, availability, and the potential of forest-based feedstock to support state and federal renewable energy goals while maintaining current uses. • TASK B: Improve Harvesting, Processing and Transportation Systems – Identify and develop cost, energy, and carbon efficient harvesting, processing and transportation systems. • TASK C: Improve Forest Feedstock Productivity and Sustainability – Identify and develop sustainable feedstock production systems through the establishment and monitoring of a statewide network of field trials in forests and energy plantations. • TASK D: Engage Stakeholders – Increase understanding of forest biomass production systems for biofuels by a broad range of stakeholders. The goal and objectives of this research and development project were fulfilled with key model deliverables including: 1) The Forest Biomass Inventory System (Sub-task A1) of feedstock inventory and availability and, 2) The Supply Chain Model (Sub-task B2). Both models are vital to Michigan’s forest biomass industry and support forecasting delivered cost, as well as carbon and energy balance. All of these elements are important to facilitate investor, operational and policy decisions. All other sub-tasks supported the development of these two tools either directly or by building out supporting information in the ...
Date: April 24, 2012
Creator: LaCourt, Donna M.; Miller, Raymond O. & Shonnard, David R.
Partner: UNT Libraries Government Documents Department

Canastota Renewable Energy Facility Project

Description: The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.
Date: December 13, 2013
Creator: Blake, Jillian & Hunt, Allen
Partner: UNT Libraries Government Documents Department

Biorefinery and Carbon Cycling Research Project

Description: In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [ 1] pretreatment of biomass to enhance quality of products from thermochemical conversion; [2] characterization of and development of coproduct uses; [3] advancement in fermentation of lignocellulosics and particularly C5 and C6 sugars simultaneously, and [ 4] development of algal biomass as a potential substrate for the biorefinery. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the thermochemical product quality in the form of lower tar production, simultaneous of use of multiple sugars in fermentation, use ofbiochar in environmental (ammonia adsorption) and agricultural applications, and production of algal biomass in wastewaters. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.
Date: June 8, 2012
Creator: Das, K. C., Adams; Thomas, T; Eiteman, Mark A; Kastner, James R; Mani, Sudhagar & Adolphson, Ryan
Partner: UNT Libraries Government Documents Department

Research, Development and Demonstration of Bio-Mass Boiler for Food Industry

Description: Frito-Lay is working to reduce carbon emissions from their manufacturing plants. As part of this effort, they invested in a “biomass-fired” boiler at the Topeka, Kansas, plant. Frito-Lay partnered with Burns & McDonnell Engineering, Inc. and CPL Systems, Inc., to design and construct a steam producing boiler using “carbon neutral” fuels such as wood wastes (e.g. tree bark), shipping pallets, and used rubber vehicle tires. The U.S. Department of Energy (DOE) joined with Frito-Lay, Burns & McDonnell, and CPL to analyze the reductions in carbon dioxide (CO{sub 2}) emissions that result from use of biomass-fired boilers in the food manufacturing environment. DOE support provided for the data collection and analysis, and reporting necessary to evaluate boiler efficiencies and reductions in CO{sub 2} emissions. The Frito-Lay biomass-fired boiler has resulted in significant reductions in CO{sub 2} emissions from the Topeka production facility. The use of natural gas has been reduced by 400 to 420 million standard cubic feet per year with corresponding reductions of 24,000 to 25,000 tons of CO{sub 2}. The boiler does require auxiliary “functions,” however, that are unnecessary for a gas-fired boiler. These include heavy motors and fans for moving fuel and firing the boiler, trucks and equipment for delivering the fuel and moving at the boiler plant, and chippers for preparing the fuel prior to delivery. Each of these operations requires the combustion of fossil fuels or electricity and has associated CO{sub 2} emissions. Even after accounting for each of these auxiliary processes, however, the biomass-fired boiler results in net emission reductions of 22,500 to 23,500 tons of CO{sub 2} per year.
Date: March 31, 2012
Creator: Fisher, Steve & Knapp, David
Partner: UNT Libraries Government Documents Department

Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

Description: The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control ...
Date: June 30, 2013
Creator: Galowitz, Stephen
Partner: UNT Libraries Government Documents Department

Thermal Pretreatment of Wood for Cogasification/cofiring of Biomass and Coal

Description: Utilization of biomass as a co-feed in coal and biomass co-firing and co-gasification requires size reduction of the biomass. Reducing biomass to below 0.2 mm without pretreatment is difficult and costly because biomass is fibrous and compressible. Torrefaction is a promising thermal pretreatment process and has the advantages of increasing energy density, improving grindability, producing fuels with more homogenous compositions and hydrophobic behavior. Temperature is the most important factor for the torrefaction process. Biomass grindability is related to cell wall structure, thickness and composition. Thermal treatment such as torrefaction can cause chemical changes that significantly affect the strength of biomass. The objectives of this study are to understand the mechanism by which torrefaction improves the grindability of biomass and discuss suitable temperatures for thermal pretreatment for co-gasification/cofiring of biomass and coal. Wild cherry wood was selected as the model for this study. Samples were prepared by sawing a single tangential section from the heartwood and cutting it into eleven pieces. The samples were consecutively heated at 220, 260, 300, 350, 450 and 550oC for 0.5 hr under flowing nitrogen in a tube furnace. Untreated and treated samples were characterized for physical properties (color, dimensions and weight), microstructural changes by SEM, and cell wall composition changes and thermal behaviors by TGA and DSC. The morphology of the wood remained intact through the treatment range but the cell walls were thinner. Thermal treatments were observed to decompose the cell wall components. Hemicellulose decomposed over the range of ~200 to 300oC and resulted in weakening of the cell walls and subsequently improved grindability. Furthermore, wood samples treated above 300oC lost more than 39% in mass. Therefore, thermal pretreatment above the hemicelluloses decomposition temperature but below 300oC is probably sufficient to improve grindability and retain energy value.
Date: October 29, 2013
Creator: Wang, Ping; Howard, Bret; Hedges, Sheila; Morreale, Bryan; Van Essendelft, Dirk & Berry, David
Partner: UNT Libraries Government Documents Department

Autothermal Reforming of Renewable Fuels

Description: The conversion of biomass into energy and chemicals is a major research and technology challenge of this century, comparable to petroleum processing in the last century. Recently we have successfully transformed both volatile liquids and nonvolatile liquids and solids into syngas with no carbon formation in autothermal catalytic reactors with residence times of ~10 milliseconds. In the proposed research program we explore the mechanisms of these processes and their extensions to other biomass sources and applications by examining different feeds, catalysts, flow conditions, and steam addition to maximize production of either syngas or chemicals. We will systematically study the catalytic partial oxidation in millisecond autothermal reactors of solid biomass and the liquid products formed by pyrolysis of solid biomass. We will examine alcohols, polyols, esters, solid carbohydrates, and lignocellulose to try to maximize formation of either hydrogen and syngas or olefins and oxygenated chemicals. We will explore molecules and mixtures of practical interest as well as surrogate molecules that contain the functional groups of biofuels but are simpler to analyze and interpret. We will examine spatial profiles within the catalyst and transient and periodic operation of these reactors at pressures up to 10 atm to obtain data from which to explore more detailed mechanistic models and optimize performance to produce a specific desired product. New experiments will examine the conversion of syngas into biofuels such as methanol and dimethyl ether to explore the entire process of producing biofuels from biomass in small distributed systems. Experiments and modeling will be integrated to probe and understand detailed reaction kinetics and the processes by which solid biomass particles are transformed into syngas and chemicals by reactive flash volatilization.
Date: May 1, 2009
Creator: Schmidt, Lanny D
Partner: UNT Libraries Government Documents Department

Cleaner Energy for Cars

Description: Representing the Center for Catalytic Hydrocarbon Functionalization (CCHF), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of CCHF is to develop, validate, and optimize new methods to rearrange the bonds of hydrocarbons, implement enzymatic strategies into synthetic systems, and design optimal environments for catalysts that can be used to reversibly functionalize hydrocarbons, especially for more efficient use of natural gas including low temperature conversion to liquid fuels.
Date: July 18, 2013
Creator: Cropley, Cecelia
Partner: UNT Libraries Government Documents Department

Power to the People...Energy for Now and Later

Description: Representing the Combustion Energy Frontier Research Center (CEFRC), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of CEFRC is to develop a validated, predictive, multi-scale combusion modeling capacity which can be used to optimize the design and operation of evolving fuels in advanced engines for transportation applications.
Date: July 18, 2013
Creator: Sung, Chih-Jen; Law, Chung K; Brady, Kyle & Curtis, Nicholas
Partner: UNT Libraries Government Documents Department

Effect of pelleting on the recalcitrance and bioconversion of dilute-acid pretreated corn stover

Description: Background: Knowledge regarding the performance of densified biomass in biochemical processes is limited. The effects of densification on biochemical conversion are explored here. Methods: Pelleted corn stover samples were generated from bales that were milled to 6.35 mm. Low-solids acid pretreatment and simultaneous saccharification and fermentation were performed to evaluate pretreatment efficacy and ethanol yields achieved for pelleted and ground stover (6.35 mm and 2 mm) samples. Both pelleted and 6.35-mm ground stover were evaluated using a ZipperClave® reactor under high-solids, process-relevant conditions for multiple pretreatment severities (Ro), followed by enzymatic hydrolysis of the washed, pretreated solids. Results: Monomeric xylose yields were significantly higher for pellets (approximately 60%) than for ground formats (approximately 38%). Pellets achieved approximately 84% of theoretical ethanol yield (TEY); ground stover formats had similar profiles, reaching approximately 68% TEY. Pelleting corn stover was not detrimental to pretreatment efficacy for both low- and high-solids conditions, and even enhanced ethanol yields.
Date: July 1, 2012
Creator: Ray, Allison E; Hoover, Amber & Gresham, Gary
Partner: UNT Libraries Government Documents Department