4,364 Matching Results

Search Results

Advanced search parameters have been applied.

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

Description: Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated ...
Date: December 1, 1997
Creator: Stang, John H.
Partner: UNT Libraries Government Documents Department

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

Description: Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated ...
Date: December 1, 1997
Creator: Stang, John H.
Partner: UNT Libraries Government Documents Department

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

Description: Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated ...
Date: December 1, 1997
Creator: Stang, John H.
Partner: UNT Libraries Government Documents Department

An Advanced Fracture Characterization and Well Path Navigation System for Effective Re-Development and Enhancement of Ultimate Recovery from the Complex Monterey Reservoir of South Ellwood Field, Offshore California

Description: Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to over 10,000,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intended to investigate, map and characterize field fracture patterns and the reservoir conduit system. In the first phase of the project, state of the art borehole imaging technologies including FMI, dipole sonic, interference tests and production logs were employed to characterize fractures and micro faults. These data along with the existing database were used in the construction of a new geologic model of the fracture network. An innovative fracture network reservoir simulator was developed to better understand and manage the aquifer’s role in pressure maintenance and water production. In the second phase of this project, simulation models were used to plan the redevelopment of the field using high angle wells. Correct placement of the wells is critical to intersect the best-developed fracture zones and to avoid producing large volumes of water from the water leg. Particula r attention was paid to those areas of the field that have not been adequately developed with the existing producers. In cooperation with the DOE and the PTTC, the new data and the new fracture simulation model were shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical ...
Date: June 30, 2006
Creator: Horner, Steve & Ershaghi, Iraj
Partner: UNT Libraries Government Documents Department

Petroleum Processing Efficiency Improvement

Description: A series of volatile crude oils was characterized using the Asphaltene Determinator oncolumn precipitation and re-dissolution method developed at Western Research Institute (WRI). Gravimetric asphaltenes and polars fractions from silica gel chromatography separation of the oils were characterized also. A study to define the differences in composition of asphaltenes in refinery desalter rag layer emulsions and the corresponding feed and desalter oils was conducted. Results indicate that the most polar and pericondensed aromatic material in the asphaltenes is enriched in the emulsions. The wax types and carbon number distributions in the two heptaneeluting fractions from the Waxphaltene Determinator separation were characterized by repetitive collection of the fractions followed by high temperature gas chromatography (GC) and Fourier transform infrared spectroscopy (FTIR). High resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) was conducted by researchers at the Florida State University National High Magnetic Field laboratory in a no-cost collaboration with the study.
Date: September 1, 2012
Creator: Schabron, John; Rovani, Joseph; Sanderson, Mark & Loveridge, Jenny
Partner: UNT Libraries Government Documents Department

Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

Description: Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive ...
Date: December 31, 2012
Creator: Hanks, Catherine
Partner: UNT Libraries Government Documents Department

Production Well Performance Enhancement using Sonication Technology

Description: The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: • Laboratory studies • Mathematical modeling • Sonic tool design and development • Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40°C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale-up purposes was limited due to funding constraints. ...
Date: December 31, 2005
Creator: Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn et al.
Partner: UNT Libraries Government Documents Department

Subtask 1.8 - Investigation of Improved Conductivity and Proppant Applications in the Bakken Formation

Description: Given the importance of hydraulic fracturing and proppant performance for development of the Bakken and Three Forks Formations within the Williston Basin, a study was conducted to evaluate the key factors that may result in conductivity loss within the reservoirs. Various proppants and reservoir rock cores were exposed to several different fracturing and formation fluids at reservoir conditions. The hardness of the rock cores and the strength of the proppants were evaluated prior to and following fluid exposure. In addition, the conductivity of various proppants, as well as formation embedment and spalling, was evaluated at reservoir temperatures and pressures using actual reservoir rock cores. The results of this work suggest that certain fluids may affect both rock and proppant strength, and therefore, fluid exposure needs to be considered in the field. In addition, conductivity decreases within the Bakken Formation appear to be a function of a variety of factors, including proppant and rock strength, as well as formation embedment and spalling. The results of this study highlight the need for advanced conductivity testing, coupled with quantification of formation embedment and spalling. Given the importance of proppant performance on conductivity loss and, ultimately, oil recovery, better understanding the effects of these various factors on proppant and rock strength in the field is vital for more efficient production within unconventional oil and gas reservoirs.
Date: July 31, 2012
Creator: Kurz, Bethany; Schmidt, Darren; Beddoe, Steven Smith Christopher; Lindeman, Corey & Mibeck, Blaise
Partner: UNT Libraries Government Documents Department

Chemical Methods for Ugnu Viscous Oils

Description: The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the ...
Date: March 31, 2012
Creator: Mohanty, Kishore
Partner: UNT Libraries Government Documents Department

The Bakken-An Unconventional Petroleum and Reservoir System

Description: An integrated geologic and geophysical study of the Bakken Petroleum System, in the Williston basin of North Dakota and Montana indicates that: (1) dolomite is needed for good reservoir performance in the Middle Bakken; (2) regional and local fractures play a significant role in enhancing permeability and well production, and it is important to recognize both because local fractures will dominate in on-structure locations; and (3) the organic-rich Bakken shale serves as both a source and reservoir rock. The Middle Bakken Member of the Bakken Formation is the target for horizontal drilling. The mineralogy across all the Middle Bakken lithofacies is very similar and is dominated by dolomite, calcite, and quartz. This Member is comprised of six lithofacies: (A) muddy lime wackestone, (B) bioturbated, argillaceous, calcareous, very fine-grained siltstone/sandstone, (C) planar to symmetrically ripple to undulose laminated, shaly, very fine-grained siltstone/sandstone, (D) contorted to massive fine-grained sandstone, to low angle, planar cross-laminated sandstone with thin discontinuous shale laminations, (E) finely inter-laminated, bioturbated, dolomitic mudstone and dolomitic siltstone/sandstone to calcitic, whole fossil, dolomitic lime wackestone, and (F) bioturbated, shaly, dolomitic siltstone. Lithofacies B, C, D, and E can all be reservoirs, if quartz and dolomite-rich (facies D) or dolomitized (facies B, C, E). Porosity averages 4-8%, permeability averages 0.001-0.01 mD or less. Dolomitic facies porosity is intercrystalline and tends to be greater than 6%. Permeability may reach values of 0.15 mD or greater. This appears to be a determinant of high productive wells in Elm Coulee, Parshall, and Sanish fields. Lithofacies G is organic-rich, pyritic brown/black mudstone and comprises the Bakken shales. These shales are siliceous, which increases brittleness and enhances fracture potential. Mechanical properties of the Bakken reveal that the shales have similar effective stress as the Middle Bakken suggesting that the shale will not contain induced fractures, and will ...
Date: December 31, 2011
Creator: Sarg, Frederick
Partner: UNT Libraries Government Documents Department

Next Generation Surfactants for Improved Chemical Flooding Technology

Description: The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies the effects of such things as temperature, electrolyte concentration and the effect of ...
Date: May 31, 2012
Creator: Wesson, Laura; Lohateeraparp, Prapas; Harwell, Jeffrey & Shiau, Bor-Jier
Partner: UNT Libraries Government Documents Department

OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

Description: Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field test data from virtually anywhere in the world, and development of novel data processing techniques. Comprehensive testing was performed to ...
Date: June 1, 2003
Creator: Wang, Anbo; Cooper, Kristie L. & Pickrell, Gary R.
Partner: UNT Libraries Government Documents Department

FUEL CONSERVATION BY THE APPLICATION OF SPILL PREVENTION AND FAILSAFE ENGINEERING (A GUIDELINE MANUAL)

Description: From a series of nationwide plant surveys dedicated to spill prevention, containment and countermeasure evaluation, coupled with spill response action activities, a need was determined for a spill prevention guideline manual. From Federally accumulated statistics for oil and hazardous substance spills, the authors culled information on spills of hydrocarbon products. In 1978, a total of 1456 oil spills were reported compared to 1451 in 1979. The 1978 spills were more severe, however, since 7;289,163 gallons of oil were accident~y discharged. In 1979, the gallons spilled was reduced to 3,663,473. These figures are derived from reported spills; it is highly possible that an equal amount was spilled and not reported. Spills effectively contained within a plant property that do not enter a n~vigational waterway need not be reported. Needless to say, there is a tremendous annual loss of oil products due to accidental spillage during transportation, cargo transfer, bulk storage and processing. As an aid to plant engineers and managers, Fe~eral workers, fire marshalls and fire and casualty insurance inspectors, the documen~ is offered as a spill prevention guide. The'manual defines state-of-the-art spill prevention practices and automation techniques that can reduce spills caused by human error. Whenever practical, the cost of implementation is provided to aid equipment acquisition and installation budgeting. To emphasize the need for spill prevention activities, historic spills are briefly described after which remedial action is defined in an appropriate section of the manual. The section on plant security goes into considerable depth since to date no Federal agency or traqe association has provided industry with guidelines on this important phase of plant operation. The intent of the document is to provide finger-tip reference material that can be used by interested parties in a nationwide effort to reduce loss of oil from preventable spills.
Date: October 30, 1980
Creator: Goodier,, J. L.; Siclari,, R. J. & Garrity,, P. A.
Partner: UNT Libraries Government Documents Department

Silurian "Clinton" Sandstone Reservoir Characterization for Evaluation of CO2-EOR Potential in the East Canton Oil Field, Ohio

Description: The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian “Clinton” sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test (“Huff-n-Puff”) was conducted on a well in Stark County to test the injectivity in a “Clinton”-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day “soak” period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the “Clinton” sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection ...
Date: December 30, 2009
Creator: Riley, Ronald; Wicks, John & Perry, Christopher
Partner: UNT Libraries Government Documents Department

Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

Description: Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses were used to better understand porosity and permeability trends in the region ...
Date: December 21, 2012
Creator: Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt et al.
Partner: UNT Libraries Government Documents Department

Bridging the Gap between Chemical Flooding and Independent Oil Producers

Description: Ten Kanas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90+ % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increased with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.
Date: March 31, 2012
Creator: McCool, Stan; Walton, Tony; Willhite, Paul; Ballard, Mark; Rondon, Miguel; Song, Kaixu et al.
Partner: UNT Libraries Government Documents Department

Bridging the Gap between Chemical Flooding and Independent Oil Producers

Description: Ten Kanas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90+ % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increased with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.
Date: March 31, 2012
Creator: McCool, Stan; Walton, Tony; Whillhite, Paul; Ballard, Mark; Rondon, Miguel; Song, Kaixu et al.
Partner: UNT Libraries Government Documents Department

Vitrification of Cesium-Laden Organic Ion Exchange Resin in a Stirred Melter

Description: The goal of this research was a feasibility study for vitrifying the organic ion exchange resin in a stirred-tank melter. Tests were conducted to determine the fate of cesium including the feed, exit glass, and offgas streams and to assess any impact of feeding the resin on the melter or its performance.
Date: July 9, 1997
Creator: Cicero-Herman, C.A; Sargent, T.N.; Overcamp, T.J. & Bickford, D.F.
Partner: UNT Libraries Government Documents Department

Fluid and Rock Property Controls On Production And Seismic Monitoring Alaska Heavy Oils

Description: The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formation’s vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations.
Date: June 30, 2012
Creator: Liberatore, Matthew; Herring, Andy; Prasad, Manika; Dorgan, John & Batzle, Mike
Partner: UNT Libraries Government Documents Department

Evaluation and Enhancement of Carbon Dioxide Flooding Through Sweep Improvement

Description: Carbon dioxide displacement is a common improved recovery method applied to light oil reservoirs (30-45{degrees}API). The economic and technical success of CO{sub 2} floods is often limited by poor sweep efficiency or large CO{sub 2} utilization rates. Projected incremental recoveries for CO{sub 2} floods range from 7% to 20% of the original oil in place; however, actual incremental recoveries range from 9% to 15% of the original oil in place, indicating the potential for significant additional recoveries with improved sweep efficiency. This research program was designed to study the effectiveness of carbon dioxide flooding in a mature reservoir to identify and develop methods and strategies to improve oil recovery in carbon dioxide floods. Specifically, the project has focused on relating laboratory, theoretical and simulation studies to actual field performance in a CO{sub 2} flood in an attempt to understand and mitigate problems of areal and vertical sweep efficiency. In this work the focus has been on evaluating the status of existing swept regions of a mature CO{sub 2} flood and developing procedures to improve the design of proposed floods. The Little Creek Field, Mississippi has been studied through laboratory, theoretical, numerical and simulation studies in an attempt to relate performance predictions to historical reservoir performance to determine sweep efficiency, improve the understanding of the reservoir response to CO{sub 2} injection, and develop scaling methodologies to relate laboratory data and simulation results to predicted reservoir behavior. Existing laboratory information from Little Creek was analyzed and an extensive amount of field data was collected. This was merged with an understanding of previous work at Little Creek to generate a detailed simulation study of two portions of the field – the original pilot area and a currently active part of the field. This work was done to try to relate all of this ...
Date: September 30, 2009
Creator: Hughes, Richard
Partner: UNT Libraries Government Documents Department

Using comprehensive two-dimensional gas chromatography to explore the geochemistry of the Santa Barbara oil seeps

Description: The development of comprehensive two-dimensional gas chromatography (GC x GC) has expanded the analytical window for studying complex mixtures like oil. Compared to traditional gas chromatography, this technology separates and resolves at least an order of magnitude more compounds, has a much larger signal to noise ratio, and sorts compounds based on their chemical class; hence, providing highly refined inventories of petroleum hydrocarbons in geochemical samples that was previously unattainable. In addition to the increased resolution afforded by GC x GC, the resulting chromatograms have been used to estimate the liquid vapor pressures, aqueous solubilities, octanol-water partition coefficients, and vaporization enthalpies of petroleum hydrocarbons. With these relationships, powerful and incisive analyses of phase-transfer processes affecting petroleum hydrocarbon mixtures in the environment are available. For example, GC x GC retention data has been used to quantitatively deconvolve the effects of phase transfer processes such as water washing and evaporation. In short, the positive attributes of GC x GC-analysis have led to a methodology that has revolutionized the analysis of petroleum hydrocarbons. Overall, this research has opened numerous fields of study on the biogeochemical "œgenetics" (referred to as petroleomics) of petroleum samples in both subsurface and surface environments. Furthermore, these new findings have already been applied to the behavior of oil at other seeps as well, for petroleum exploration and oil spill studies.
Date: March 27, 2013
Creator: Reddy, Christopher & Nelson, Robert
Partner: UNT Libraries Government Documents Department

Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

Description: This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”
Date: October 1, 2012
Creator: Nisson, Kerry L.
Partner: UNT Libraries Government Documents Department

Documentation of INL’s In Situ Oil Shale Retorting Water Usage System Dynamics Model

Description: A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9™ software package. Three phases of an in situ retort were consider; a construction phase primarily accounts for water needed for drilling and water produced during dewatering, an operation phase includes the production of water from the retorting process, and a remediation phase water to remove heat and solutes from the subsurface as well as return the ground surface to its natural state. Throughout these three phases, the water is consumed and produced. Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the retort zone. Production of water is through the dewatering of the retort zone, and during chemical pyrolysis reaction of the kerogen conversion. The document discusses each of the three phases used in the model.
Date: December 1, 2012
Creator: Mattson, Earl D & Hull, Larry
Partner: UNT Libraries Government Documents Department