3 Matching Results

Search Results

Advanced search parameters have been applied.

Power and phase monitoring system for the lower hybrid phased array heating system on ATC machine

Description: A four waveguide phased array slow wave structure has been constructed to couple microwave energy into plasma in the ATC Tokamac at Princeton. Theory has indicated that the coupling of power into the plasma column is a strong function of the imposed fourier spectrum at the antenna aperture. To optimize heating, and to verify theoretical results, a precision amplitude and phase monitoring system has been designed and constructed. The system data output is routed to an IBM 1800 computer where the fourier spectrum in n/sub parallel/ space is computed for discrete increments of time during an RF pulse. Computer output data is used to update the adjustment of transmission line parameters in between pulses. (auth)
Date: January 1, 1975
Creator: Reed, B.W.
Partner: UNT Libraries Government Documents Department

200 kW, 800 MHz transmitter system for lower hybrid heating

Description: This paper describes a new rf heating system which has just been completed and is now operational on the ATC machine. The system utilizes four UHF TV klystrons to generate at least 200 kW of power at a frequency of 800 MHz. Pulse widths can be varied from 20 $mu$sec up to 20 msec. A radar type floating deck modulator along with photo-optical transmitting and receiving devices have been incorporated into the system to provide the pulse fidelity and versatility which characterizes this equipment. Modular construction was emphasized in the design, when possible, to reduce maintenance and down time in the advent of component falilure. Hybrid combining techniques are utilized in order to provide two 100 kW feeds into the machine. (auth)
Date: January 1, 1975
Creator: Deitz, A.
Partner: UNT Libraries Government Documents Department

Radio frequency plasma heating in large tokamak systems near the lower hybrid resonance

Description: The frequency range, power, efficiency, and pulse length of a high power rf system are discussed as they might be applied to the TFTR Tokamak facility as well as on a full scale reactor. Comparisons are made of the size, power output, and costs to obtain microwave power sufficient to satisfy the physics requirements. A new microwave feed concept is discussed which will improve the coupling of the microwave energy into the plasma. The unique advantages of waveguide feed systems is apparent when one considers the practical problems associated with coupling supplementary heating energy into a reactor. (auth)
Date: January 1, 1975
Creator: Deitz, A. & Hooke, W.M.
Partner: UNT Libraries Government Documents Department