Search Results

open access

PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT

Description: We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--(a) Potential enhancement of charm production, (b) Open beauty production, (c) Flavor dependence of jet quenching and QCD energy loss, (d) Accurate charm reference for quarkonium, (e) Thermal dilepton radiation, (f) High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}, and (g) Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--(a) {Delta}G/G with charm, (b) {Delta}G/G with beauty, and (c) x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range.
Date: October 1, 2004
Creator: AKIBA,Y.
Partner: UNT Libraries Government Documents Department
open access

SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

Description: The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.
Date: October 27, 2004
Creator: ARNOLD, B.W.
Partner: UNT Libraries Government Documents Department
open access

Government Activities to Protect the Electric Grid

Description: This report provides a description of initiatives within the Federal Energy Regulatory Commission and the Departments of Energy, Homeland Security, and Defense to protect the physical transmission infrastructure.
Date: October 20, 2004
Creator: Abel, Amy
Partner: UNT Libraries Government Documents Department
open access

Report of the APS Neutrino Study Reactor Working Group

Description: The worldwide program to understand neutrino oscillations and determine the neutrino mixing parameters, CP violating effects, and mass hierarchy will require a broad combination of measurements. The group believes that a key element of this future neutrino program is a multi-detector neutrino experiment (with baselines of {approx} 200 m and {approx} 1.5 km) with a sensitivity of sin{sup 2} 2{theta}{sub 13} = 0.01. In addition to oscillation physics, the reactor experiment may provide interesting measurements of sin{sup 2} {theta}{sub W} at Q{sup 2} = 0, neutrino couplings, magnetic moments, and mixing with sterile neutrino states. {theta}{sub 13} is one of the twenty-six parameters of the standard model, the best model of electroweak interactions for energies below 100 GeV and, as such, is worthy of a precision measurement independent of other considerations. A reactor experiment of the proposed sensitivity will allow a measurement of {theta}{sub 13} with no ambiguities and significantly better precision than any other proposed experiment, or will set limits indicating the scale of future experiments required to make progress. Figure 1 shows a comparison of the sensitivity of reactor experiments of different scales with accelerator experiments for setting limits on sin{sup 2} 2{theta}{sub 13} if the mixing angle is very small, or for making a measurement of sin{sup 2} 2{theta}{sub 13} if the angle is observable. A reactor experiment with a 1% precision may also resolve the degeneracy in the {theta}{sub 23} parameter when combined with long-baseline accelerator experiments. In combination with long-baseline measurements, a reactor experiment may give early indications of CP violation and the mass hierarchy. The combination of the T2K and Nova long-baseline experiments will be able to make significant measurements of these effects if sin{sup 2} 2{theta}{sub 13} > 0.05 and with enhanced beam rates can improve their reach to the sin{sup 2} 2{theta}{sub …
Date: October 28, 2004
Creator: Abouzaid, E.; Anderson, K.; Barenboim, G.; Berger, B.; Blucher, E.; Bolton, T. et al.
Partner: UNT Libraries Government Documents Department
open access

Atmospheric Radiation Measurement Program Science Plan

Description: The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at …
Date: October 31, 2004
Creator: Ackerman, T
Partner: UNT Libraries Government Documents Department
open access

Atmospheric Radiation Measurement Program Science Plan Current Status and Future Directions of the ARM Science Program

Description: The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: • Maintain the data record at the fixed ARM sites for at least the next five years. • Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. • Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. • Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. • Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. • Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. • Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the …
Date: October 30, 2004
Creator: Ackerman, TP; Genio, AD Del; Ellingson, RG; Ferrare, RA; Klein, SA; McFarquhar, GM et al.
Partner: UNT Libraries Government Documents Department
open access

Exotic physics: search for scalar leptoquark pairs decaying to nu nu-bar qq-bar in p anti-p collisions at s**(1/2) = 1.96 tev

Description: We report on a search for the pair production of scalar leptoquarks, LQ, using 191 pb{sup -1} of proton-antiproton collision data recorded by the CDF experiment during Run II of the Tevatron. The leptoquarks are sought via their decay into a neutrino and quark yielding missing transverse energy and several jets of large transverse energy. No evidence for leptoquark production is observed, and limits are set on {sigma}(p{bar p} {yields} LQ{ovr OQ}X {yields} v{bar v}q{bar q}X). Using a next-to-leading order theoretical prediction of the cross section for scalar leptoquark production, we exclude first-generation leptoquarks in the mass interval 78 to 117 GeV/c{sup 2} at the 95% confidence level for BR(LQ {yields} vq) = 100%.
Date: October 25, 2004
Creator: Acosta, D.
Partner: UNT Libraries Government Documents Department
open access

Top physics: measurement of the tt-bar production cross section in pp-bar collisions at s**(1/2) = 1.96 tev using dilepton event

Description: We report a measurement of the t{bar t} production cross section using dilepton events with jets and missing transverse energy in p{bar p} collisions at a center-of-mass energy of 1.96 TeV. Using a 197 {+-} 12 pb{sup -1} data sample recorded by the upgraded Collider Detector at Fermilab, we use two complementary techniques to select candidate events. We compare the number of observed events and selected kinematical distributions with the predictions of the standard model and find good agreement. The combined result of the two techniques yields a t{bar t} production cross section of 7.0{sub -2.1}{sup +2.4}(stat){sub -1.1}{sup _1.6}(syst) {+-} 0.4(lum) pb.
Date: October 14, 2004
Creator: Acosta, D.
Partner: UNT Libraries Government Documents Department
open access

High efficiency, radiation-hard solar cells

Description: The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.
Date: October 22, 2004
Creator: Ager, J. W., III & Walukiewicz, W.
Partner: UNT Libraries Government Documents Department
open access

Trade and the Americas

Description: At the 1994 Summit of the Americas, 34 hemispheric democracies agreed to create a “Free Trade Area of the Americas” (FTAA) no later than 2005. If created, the FTAA would be a $13 trillion market of 34 countries (Cuba is not included) and nearly 800 million people. The population alone would make it the largest free trade area in the world with nearly twice the 450 million population of the now 25-nation European Union. In the nearly ten years following the 1994 summit, Western Hemisphere trade ministers have met eight times to advance the negotiating process. At the last ministerial held from November 17- 20 2003 in Miami, ministers agreed to a declaration that set a September 2004 deadline for the market access talks, created a two-tiered FTAA structure, and reaffirmed countries’ commitment to complete the entire FTAA by January 2005.
Date: October 19, 2004
Creator: Ahearn, Raymond J.
Partner: UNT Libraries Government Documents Department
open access

Advanced Computational Model for Three-Phase Slurry Reactors Progress Report: October 2004

Description: In this project, an Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column was developed. The approach used an Eulerian analysis of liquid flows in the bubble column, and made use of the Lagrangian trajectory analysis for the bubbles and particle motions. The bubble-bubble and particle-particle collisions are included the model. The model predictions are compared with the experimental data and good agreement was found An experimental setup for studying two-dimensional bubble columns was developed. The multiphase flow conditions in the bubble column were measured using optical image processing and Particle Image Velocimetry techniques (PIV). A simple shear flow device for bubble motion in a constant shear flow field was also developed. The flow conditions in simple shear flow device were studied using PIV method. Concentration and velocity of particles of different sizes near a wall in a duct flow was also measured. The technique of Phase-Doppler anemometry was used in these studies. An Eulerian volume of fluid (VOF) computational model for the flow condition in the two-dimensional bubble column was also developed. The liquid and bubble motions were analyzed and the results were compared with observed flow patterns in the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were also analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures were also studied. The simulation results were compared with the experimental data and discussed A thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion was developed. The balance laws were obtained and the constitutive laws established.
Date: October 1, 2004
Creator: Ahmadi, Goodarz
Partner: UNT Libraries Government Documents Department
open access

Development of a Novel Catalyst for NO Decomposition

Description: Air pollution arising from the emission of nitrogen oxides as a result of combustion taking place in boilers, furnaces and engines, has increasingly been recognized as a problem. New methods to remove NO{sub x} emissions significantly and economically must be developed. The current technology for post-combustion removal of NO is the selective catalytic reduction (SCR) of NO by ammonia or possibly by a hydrocarbon such as methane. The catalytic decomposition of NO to give N{sub 2} will be preferable to the SCR process because it will eliminate the costs and operating problems associated with the use of an external reducing species. The most promising decomposition catalysts are transition metal (especially copper)-exchanged zeolites, perovskites, and noble metals supported on metal oxides such as alumina, silica, and ceria. The main shortcoming of the noble metal reducible oxide (NMRO) catalysts is that they are prone to deactivation by oxygen. It has been reported that catalysts containing tin oxide show oxygen adsorption behavior that may involve hydroxyl groups attached to the tin oxide. This is different than that observed with other noble metal-metal oxide combinations, which have the oxygen adsorbing on the noble metal and subsequently spilling over to the metal oxide. This observation leads one to believe that the Pt/SnO{sub 2} catalysts may have a potential as NO decomposition catalysts in the presence of oxygen. This prediction is also supported by some preliminary data obtained for NO decomposition on a Pt/SnO{sub 2} catalyst in the PI's laboratory. The main objective of the proposed research is the evaluation of the Pt/SnO{sub 2} catalysts for the decomposition of NO in simulated power plant stack gases with particular attention to the resistance to deactivation by O{sub 2}, CO{sub 2}, and elevated temperatures. Therefore, it is proposed to perform temperature programmed desorption (TPD) and temperature programmed reaction …
Date: October 22, 2004
Creator: Akyurtlu, Ates & Akyurtlu, Jale F.
Partner: UNT Libraries Government Documents Department
open access

Modeling the Transport and Chemical Evolution of Onshore and Offshore Emissions and their Impact on Local and Regional Air Quality Using a Variable-Grid-Resolution Air Quality Model

Description: This semiannual report summarizes the research performed from 17 April through 16 October 2004. Major portions of the research in several of the project's current eight tasks have been completed, and the results obtained are briefly presented. We have successfully developed the meteorological inputs using the best possible modeling configurations, resulting in improved representation of atmospheric processes. Ingestion of satellite-derived sea surface temperatures in conjunction with the use of our new surface data assimilation technique have resulted in largely improved meteorological inputs to drive the MAQSIP-VGR. The development of the variable-grid-resolution emissions model, SMOKE-VGR, is also largely complete. We expect to develop the final configuration of the SMOKE-VGR during the upcoming reporting period. We are in the process of acquiring the newly released emissions database and offshore emissions data sets to update our archives. The development of the MAQSIP-VGR has been completed and a test run was performed to ensure the functionality of this air quality model. During the upcoming reporting period, we expect to perform the first MAQSIP-VGR simulations over the Houston-Galveston region to study the roles of the meteorology, offshore emissions, and chemistry-transport interactions that determine the temporal and spatial evolution of ozone and its precursors.
Date: October 16, 2004
Creator: Alapaty, Kiran
Partner: UNT Libraries Government Documents Department
open access

Reactive Multiphase Behavior of CO2 in Saline Aquifers Beneath the Colorado Plateau

Description: Field and laboratory investigations of naturally occurring CO{sub 2}-reservoirs are being conducted to determine the characteristics of potential seal and reservoir units and the extent of the interactions that occur between the host rocks and the CO{sub 2} charged fluids. Efforts have focused on the Farnham Dome field, located in central Utah, the Springerville-St. Johns field in Arizona and New Mexico, and most recently, the Crystal Geyser-Salt Wash graben areas with their CO{sub 2}-charged geysers and springs in central Utah. At both the Springerville-St. Johns field and the central Utah CO{sub 2} spring area, there is evidence of extensive travertine deposits that document release of CO{sub 2} to the atmosphere. At Farnham Dome, calcite debris fields appear to be remnants of vein calcite and an earlier period of fluid leakage. The main achievements during this quarter are (1): preparation for a soil gas flux survey in October at the Crystal Geyser --Little Grand Wash fault zone, and the Salt Wash graben; (2) submission of an abstract to the upcoming Measurement, Monitoring and Verification session at the Fall AGU meeting; (3) submission of an invited abstract to the Gordon Conference on Hydrocarbon Resources; and (4) receipt of initial radiocarbon dates of travertine from the Springerville-St Johns field. Analytical results and interpretations of both the travertine deposition and the soil gas surveys are still in progress, and will be included in future quarterly reports.
Date: October 25, 2004
Creator: Allis, R. G.; Moore, J. & White, S.
Partner: UNT Libraries Government Documents Department
open access

Guide to Individuals Seated on the Senate Dais

Description: This report briefly discusses where various individuals are seated in the Senate chamber.
Date: October 20, 2004
Creator: Amer, Mildred
Partner: UNT Libraries Government Documents Department
open access

Stress Corrosion Cracking Model for High Level Radioactive-Waste Packages

Description: A stress corrosion cracking (SCC) model has been adapted for performance prediction of high level radioactive-waste packages to be emplaced in the proposed Yucca Mountain repository. For waste packages of the proposed Yucca Mountain repository, the outer barrier material is the highly corrosion-resistant Alloy UNS-N06022 (Alloy 22), the environment is represented by aqueous brine films present on the surface of the waste package from dripping or deliquescence of soluble salts present in any surface deposits, and the tensile stress is principally from weld induced residual stress. SCC has historically been separated into ''initiation'' and ''propagation'' phases. Initiation of SCC will not occur on a smooth surface if the surface stress is below a threshold value defined as the threshold stress. Cracks can also initiate at and propagate from flaws (or defects) resulting from manufacturing processes (such as welding); or that develop from corrosion processes such as pitting or dissolution of inclusions. To account for crack propagation, the slip dissolution/film rupture (SDFR) model is adopted to provide mathematical formulae for prediction of the crack growth rate. Once the crack growth rate at an initiated SCC is determined, it can be used by the performance assessment to determine the time to through-wall penetration for the waste package. This paper presents the development of the SDFR crack growth rate model based on technical information in the literature as well as experimentally determined crack growth rates developed specifically for Alloy UNS-N06022 in environments relevant to high level radioactive-waste packages of the proposed Yucca Mountain radioactive-waste repository. In addition, a seismic damage related SCC crack opening area density model is briefly described.
Date: October 5, 2004
Creator: Andresen, P.; Gordon, G. & Lu, S.
Partner: UNT Libraries Government Documents Department
open access

FY 2004 Infrared Photonics Final Report

Description: Research done by the Infrared Photonics team at PNNL is focused on developing miniaturized integrated optics for the MWIR and LWIR by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin film deposition capabilities, direct-laser writing techniques, IR photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology - all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to Quantum Cascade Laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.
Date: October 1, 2004
Creator: Anheier, Norman C.; Allen, Paul J.; Keller, Paul E.; Bennett, Wendy D.; Martin, Peter M.; Johnson, Bradley R. et al.
Partner: UNT Libraries Government Documents Department
open access

Ultra-Intense Laser Pulse Propagation in Gas and Plasma

Description: It is proposed here to continue their program in the development of theories and models capable of describing the varied phenomena expected to influence the propagation of ultra-intense, ultra-short laser pulses with particular emphasis on guided propagation. This program builds upon expertise already developed over the years through collaborations with the NSF funded experimental effort lead by Professor Howard Milchberg here at Maryland, and in addition the research group at the Ecole Polytechnique in France. As in the past, close coupling between theory and experiment will continue. The main effort of the proposed research will center on the development of computational models and analytic theories of intense laser pulse propagation and guiding structures. In particular, they will use their simulation code WAKE to study propagation in plasma channels, in dielectric capillaries and in gases where self focusing is important. At present this code simulates the two-dimensional propagation (radial coordinate, axial coordinate and time) of short pulses in gas/plasma media. The plasma is treated either as an ensemble of particles which respond to the ponderomotive force of the laser and the self consistent electric and magnetic fields created in the wake of pulse or as a fluid. the plasma particle motion is treated kinetically and relativistically allowing for study of intense pulses that result in complete cavitation of the plasma. The gas is treated as a nonlinear medium with rate equations describing the various stages of ionization. A number of important physics issues will be addressed during the program. These include (1) studies of propagation in plasma channels, (2) investigation of plasma channel nonuniformities caused by parametric excitation of channel modes, (3) propagation in dielectric capillaries including harmonic generation and ionization scattering, (4) self guided propagation in gas, (5) studies of the ionization scattering instability recently identified theoretically and experimentally in …
Date: October 26, 2004
Creator: Antonsen, T. M.
Partner: UNT Libraries Government Documents Department
open access

Classroom HVAC: Improving ventilation and saving energy -- field study plan

Description: The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms (CRs) with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many CRs are under-ventilated, and public concerns about indoor environmental quality in CRs. This document provides a summary of the detailed plans developed for the field study that will take place in 2005 to evaluate the energy and IAQ performance of a new classroom HVAC technology. The field study will include measurements of HVAC energy use, ventilation rates, and IEQ conditions in 10 classrooms with the new HVAC technology and in six control classrooms with a standard HVAC system. Energy use and many IEQ parameters will be monitored continuously, while other IEQ measurements will be will be performed seasonally. Continuously monitored data will be remotely accessed via a LonWorks network. Instrument calibration plans that vary with the type of instrumentation used are established. Statistical tests will be employed to compare energy use and IEQ conditions with the new and standard HVAC systems. Strengths of this study plan include the collection of real time data for a full school year, the use of high quality instrumentation, the incorporation of many quality control measures, and the extensive collaborations with industry that limit costs to the sponsors.
Date: October 14, 2004
Creator: Apte, Michael G.; Faulkner, David; Hodgson, Alfred T. & Sullivan, Douglas P.
Partner: UNT Libraries Government Documents Department
open access

Europe and Counterterrorism: Strengthening Police and Judicial Cooperation

Description: The September 11, 2001 terrorist attacks on the United States gave new momentum to European Union (EU) initiatives to combat terrorism and other crossborder crimes such as drug trafficking, human trafficking, and financial fraud. For many years, EU efforts to address such challenges were hampered by national sovereignty concerns, insufficient resources, and a lack of trust among law enforcement agencies. However, the terrorist attacks and the subsequent revelation of Al Qaeda cells in Europe changed this status quo as it became increasingly evident that the EU’s open borders and different legal systems allowed terrorists and other criminals to move around easily and evade arrest and prosecution. Thus, EU officials renewed their efforts to harmonize national laws and bring down traditional barriers among member states’ police, intelligence, and judicial authorities. As part of this initiative, the EU has also sought to enhance ongoing cooperation with U.S. law enforcement and judicial authorities so that information can be meaningfully shared and suspects apprehended expeditiously.
Date: October 15, 2004
Creator: Archick, Kristin
Partner: UNT Libraries Government Documents Department
open access

Aqueous Corrosion Rates for Waste Package Materials

Description: The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.
Date: October 8, 2004
Creator: Arthur, S.
Partner: UNT Libraries Government Documents Department
Back to Top of Screen