36 Matching Results

Search Results

Advanced search parameters have been applied.

Evaluation of a bi-directional aluminum honeycomb impact limiter design

Description: A 120 Ton shipping cask is being developed for the on-site shipment of dry spent fuel at the Idaho National Engineering Laboratory. Impact limiters were incorporated in the cask design to limit the inertial load of the package and its contents during the hypothetical 9-meter (30-foot) drop accident required by 10CFR71. The design process included: (1) a series of static and dynamic tests to determine the crush characteristics of the bi-directional aluminum honeycomb impact limiter material, (2) the development of an analytical model to predict the cask deceleration force as a function of impact limiter crush, and (3) a series of quarter scale model drop tests to qualify the analytical model. The scale model testing, performed at Sandia National Laboratory in Albuquerque, New Mexico, revealed several design aspects which should be considered in developing bi-directional aluminum honeycomb impact limiters and several other design aspects which should be considered for impact limiter designs in general.
Date: December 1, 1995
Creator: Doman, M.J.
Partner: UNT Libraries Government Documents Department

Analytical prediction of the location of ductility dip cracking in the trans-varestraint test

Description: Some NiCrFe weld metals exhibit decreased ductility over a temperature range known as the {open_quotes}ductility dip{close_quotes} temperature (DDT) range. Ductility dip cracking (DDT) is a phenomenon which occurs in a zone bounded by the DDT range on its sides and a threshold plastic strain on its bottom as shown in figure 1. Figure 1 illustrates how ductility varies as weld metal cools from the solidus temperature for materials with and without a ductility dip. The purpose of this work is to demonstrate the ability to predict the location of the DDC in a Trans-Varestraint Test (TVT) for a specimen machined from a weld deposited EN52 plate. The DDC predictions require a combination of Trans-Varestraint testing and finite element analysis. The test provides the threshold value of externally applied nominal strain below which DDC does not occur. The analysis provides the corresponding threshold local or peak strain. The threshold local plastic strain level and the DDT range are used to predict the location of the DDC. The ultimate purpose of this work is to evaluate susceptibility of highly constrained, component welds to DDC. Test results for Trans-Varestraint Testing for a weld deposited EN52 plate are reported in reference. The ability to predict the location of the DDC in the Trans-Varestraint Test using the techniques reported herein is demonstrated by showing good comparison between the analytical results and the test data.
Date: May 1, 1997
Creator: Singh, I.; Kroenke, W. & Cola, M.
Partner: UNT Libraries Government Documents Department

Irrecoverable pressure loss coefficients for two elbows in series with various orientation angles and separation distances

Description: Test data is described for two ninety degree elbows that are in series for a piping network. Both elbows had a radius of curvature of 1.2. Three relative angles and seven different separation distances were investigated. The overall irrecoverable pressure loss for the two elbows is characterized relative to the irrecoverable pressure loss for a single elbow. In addition to providing design guidance relative to the net irrecoverable pressure loss for multiple elbows, the data provides a data base for helping qualify computational fluid dynamics (CFD) computer codes used to predict the irrecoverable pressure loss in piping systems.
Date: May 1, 1997
Creator: Coffield, R.D.; McKeown, P.T. & Hammond, R.B.
Partner: UNT Libraries Government Documents Department

The effect of aqueous environments upon the initiation and propagation of fatigue cracks in low-alloy steels

Description: The effect of elevated temperature aqueous environments upon the initiation and propagation of fatigue cracks in low-alloy steels is discussed in terms of the several parameters which influence such behavior. These parameters include water chemistry, impurities within the steels themselves, as well as factors such as the water flow rate, loading waveform and loading rates. Some of these parameters have similar effects upon both crack initiation and propagation, while others exhibit different effects in the two stages of cracking. In the case of environmentally-assisted crack (EAC) growth, the most important impurities within the steel are metallurgical sulfide inclusions which dissolve upon contact with the water. A ``critical`` concentration of sulfide ions at the crack tip can then induce environmentally-assisted cracking which proceeds at significantly increased crack growth rates over those observed in air. The occurrence, or non-occurrence, of EAC is governed by the mass-transport of sulfide ions to and from the crack-tip region, and the mass-transport is discussed in terms of diffusion, ion migration, and convection induced within the crack enclave. Examples are given of convective mass-transport within the crack enclave resulting from external free stream flow. The initiation of fatigue cracks in elevated temperature aqueous environments, as measured by the S-N fatigue lifetimes, is also strongly influenced by the parameters identified above. The influence of sulfide inclusions does not appear to be as strong on the crack initiation process as it is on crack propagation. The oxygen content of the environment appears to be the dominant factor, although loading frequency (strain rate) and temperature are also important factors.
Date: January 1, 1996
Creator: James, L.A. & Van Der Sluys, W.A.
Partner: UNT Libraries Government Documents Department

Integral cesium reservoir: Design and transient operation

Description: An electrically heated thermionic converter has been designed built and successfully tested in air (Homer et.al., 1995). One of the unique features of this converter was an integral cesium reservoir thermally coupled to the emitter. The reservoir consisted of fifteen cesiated graphite pins located in pockets situated in the emitter lead with thermal coupling to the emitter, collector and the emitter terminal; there were no auxiliary electric heaters on the reservoir. Test results are described for conditions in which the input thermal power to the converter was ramped up and down between 50% and 100% of full power in times as short as 50 sec, with data acquisition occurring every 12 sec. During the ramps the emitter and collector temperature profiles. the reservoir temperature and the electric output into a fixed load resistor are reported. The converter responded promptly to the power ramps without excessive overshoot and with no tendency to develop instabilities. This is the rust demonstration of the performance of a cesium-graphite integral reservoir in a fast transient
Date: January 1, 1995
Creator: Smith, J.N. Jr.; Horner, M.H.; Begg, L.L. & Wrobleski, W.J.
Partner: UNT Libraries Government Documents Department

Vapor fraction measurements in a steam-water duct at atmospheric pressure using neutron radiography

Description: Real-time neutron radiography has been used to study the dynamic behavior of two-phase flow and measure vapor fractions in a steam-water duct at atmospheric pressure. This unique experimental technique offers one the opportunity to observe and record on videotape now Patterns and transient behavior of two-phase flow inside opaque containers without perturbing the environment. The neutron radiographic technique is non-intrusive and requires no special transparent window region. Data are recorded simultaneously over a large area of interest. Image processing of the video data can be employed to measure bubble velocities and time-averaged and Instantaneous vapor fractions.
Date: November 11, 1994
Creator: Glickstein, S.S.; Murphy, J.H. & Hammond, R.B.
Partner: UNT Libraries Government Documents Department

Design and operation of a thermionic converter in air

Description: An electrically heated thermionic converter has been designed, built and successfully tested in air. Several unique features were incorporated in this converter: an integral cesium reservoir, innovative ceramic-to-metal seals, a heat rejection system coupling the collector to a low temperature heat sink and an innovative cylindrical heater filament. The converter was operated for extended periods of time with the emitter at about 1900 K. the collector at about 700 K, and a power density of over 2 w(e)/sq. cm. Input power transients were run between 50% and 100% thermal power, at up to 1% per second, without instabilities in performance.
Date: January 1, 1995
Creator: Horner, M.H.; Begg, L.L.; Smith, J.N. Jr.; Geller, C.B. & Kallnowski, J.E.
Partner: UNT Libraries Government Documents Department

Preconditioned gradient methods for sparse linear systems for very `large structural` problems

Description: This paper deals with background and practical experience with preconditioned gradient methods for sparse linear systems for `very large` structural problems. The conjugate gradient method with diagonal preconditioning (CG/D) is demonstrated to substantially increase the size of structural problems that can be analyzed, significantly reduce computer storage requirements, and cut computing cost; thus allowing for much more detailed modeling and increased engineering efficiency. For one case for a structural system with 396,087 unknowns, the conjugate gradient method with diagonal preconditioning is demonstrated to be a factor of sixty faster than the direct method. For certain problems, however, the number of iterations required by the CG/D method is excessive and improved methods are needed. A stand-alone iterative solver research computer program was developed to evaluate the merits of various matrix preconditioners. A matrix preconditoner based on a shifted incomplete Cholesky factorization algorithm was demonstrated to be superior to other choices. The stand-alone program incorporates an effective data management strategy which utilizes disk and solid state auxiliary computer storage devices to make it possible to efficiently solve excessively large structural problems on state-of-the-art vector and parallel computers. The background of gradient methods, algorithms for their implementation, and practical experience in their applications to structural problems are presented.
Date: December 1, 1995
Creator: Abu-Shumays, I.K.; Hutula, D.N.; Haan, J.J. & Myers, G.T.
Partner: UNT Libraries Government Documents Department

Corrosion fatigue crack growth in clad low-alloy steels: Part 1, medium-sulfur forging steel

Description: Corrosion fatigue crack propagation tests were conducted on a medium- sulfur ASTM A508-2 forging steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 30.3--38.3 mm, and depths of 13.1--16.8 mm. The experiments were conducted in a quasi-stagnant low-oxygen (O{sub 2} < 10 ppb) aqueous environment at 243{degrees}C, under loading conditions ({Delta}K, R, and cyclic frequency) conductive to environmentally-assisted cracking (EAC) in higher-sulfur steels under quasi-stagnant conditions. Earlier experiments on unclad compact tension specimens of this heat of steel did not exhibit EAC, and the present experiments on semi-elliptical surface cracks penetrating cladding also did not exhibit EAC.
Date: April 1, 1996
Creator: James, L.A.; Poskie, T.J.; Auten, T.A & Cullen, W.H.
Partner: UNT Libraries Government Documents Department

Thermally activated dislocation creep model for primary water stress corrosion cracking of NiCrFe alloys

Description: There is a growing awareness that awareness that environmentally assisted creep plays an important role in integranular stress corrosion cracking (IGSCC) of NiCrFe alloys in the primary coolant water environment of a pressurized water reactor (PWR). The expected creep mechanism is the thermally activated glide of dislocations. This mode of deformation is favored by the relatively low temperature of PWR operation combined with the large residual stresses that are most often identified as responsible for the SCC failure of plant components. Stress corrosion crack growth rate (CGR) equations that properly reflect the influence of this mechanism of crack tip deformation are required for accurate component life predictions. A phenomenological IGSCC-CGR model, which is based on an apriori assumption that the IGSCC-CGR is controlled by a low temperature dislocation creep mechanism, is developed in this report. Obstacles to dislocation creep include solute atoms such as carbon, which increase the lattice friction force, and forest dislocations, which can be introduced by cold prestrain. Dislocation creep also may be environmentally assisted due to hydrogen absorption at the crack tip. The IGSCC-CGR model developed here is based on an assumption that crack growth occurs by repeated fracture events occurring within an advancing crack-tip creep-fracture zone. Thermal activation parameters for stress corrosion cracking are obtained by fitting the CGR model to IGSCC-CGR data obtained on NiCrFe alloys, Alloy X-750 and Alloy 600. These IGSCC-CGR activation parameters are compared to activation parameters obtained from creep and stress relaxation tests. Recently reported CGR data, which exhibit an activation energy that depends on yield stress and the applied stress intensity factor, are used to benchmark the model. Finally, the effects of matrix carbon concentration, grain boundary carbides and absorbed hydrogen concentration are discussed within context of the model.
Date: December 31, 1995
Creator: Hall, M.M., Jr
Partner: UNT Libraries Government Documents Department

Corrosion fatigue crack growth in clad low-alloy steel. Part 2, Water flow rate effects in high sulfur plate steel

Description: Corrosion fatigue crack propagation tests were conducted on a high- sulfur ASTM A302-B plate steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 22.8--27.3 mm, and depths of 10.5--14.1 mm. The experiments were initiated in a quasi-stagnant low-oxygen (O{sub 2} < 10 ppb) aqueous environment at 243{degrees}C, under loading conditions ({Delta}K, R, cyclic frequency) conducive to environmentally-assisted cracking (EAC) under quasi-stagnant conditions. Following fatigue testing under quasi-stagnant conditions where EAC was observed, the specimens were then fatigue tested under conditions where active water flow of either 1.7 m/sec. or 4.7 m/sec. was applied parallel to the crack. Earlier experiments on unclad surface-cracked specimens of the same steel exhibited EAC under quasi- stagnant conditions, but water flow rates at 1.7 m/sec. and 5.0 m/sec. parallel to the crack mitigated EAC. In the present experiments on clad specimens, water flow at approximately the same as the lower of these velocities did not mitigate EAC, and a free stream velocity approximately the same as the higher of these velocities resulted in sluggish mitigation of EAC. The lack of robust EAC mitigation was attributed to the greater crack surface roughness in the cladding interfering with flow induced within the crack cavity. An analysis employing the computational fluid dynamics code, FIDAP, confirmed that frictional forces associated with the cladding crack surface roughness reduced the interaction between the free stream and the crack cavity.
Date: April 1, 1996
Creator: James, L.A; Lee, H.B.; Wire, G.L.; Novak, S.R. & Cullen, W.H.
Partner: UNT Libraries Government Documents Department

Stress corrosion cracking behavior of Alloy 600 in high temperature water

Description: SCC susceptibility of Alloy 600 in deaerated water at 360 C (statically loaded U-bend specimens) is dependent on microstructure and whether the material was cold-worked and annealed (CWA) or hot-worked and annealed (HWA). All cracking was intergranular, and materials lacking grain boundary carbides were most susceptible to SCC initiation. CWA tubing materials are more susceptible to SCC initiation than HWA ring-rolled forging materials with similar microstructures (optical metallography). In CWA tubing materials, one crack dominated and grew to a visible size. HWA materials with a low hot-working finishing temperature (<925 C) and final anneals at 1010-1065 C developed both large cracks (similar to those in CWA materials) and small intergranular microcracks detectable only by destructive metallography. HWA materials with a high hot-working finishing temperature (>980 C) and a high-temperature final anneal (>1040 C), with grain boundaries that are fully decorated, developed only microcracks in all specimens. These materials did not develop large, visually detectable cracks, even after more than 300 weeks exposure. A low-temperature thermal treatment (610 C for 7h), which reduces or eliminates SCC in Alloy 600, did not eliminate microcrack formation in high temperature processed HWA materials. Conventional metallographic and analytical electron microscopy (AEM) were done on selected materials to identify the factors responsible for the observed differences in cracking behavior. Major difference between high-temperature HWA and low-temperature HWA and CWA materials was that the high temperature processing and final annealing produced predominantly ``semi-continuous`` dendritic M{sub 7}C{sub 3} carbides along grain boundaries with a minimal amount of intragranular carbides. Lower temperature processing produced intragranular M7C3 carbides, with less intergranular carbides.
Date: July 1, 1995
Creator: Webb, G.L. & Burke, M.G.
Partner: UNT Libraries Government Documents Department

Irradiation-assisted stress corrosion cracking of HTH Alloy X-750 and Alloy 625

Description: In-reactor testing of bolt-loaded compact tension specimens was performed in 360 C water. New data confirms previous results that high irradiation levels reduce SCC resistance in Alloy X-750. Low boron heats show improved IASCC (irradiation-assisted stress corrosion cracking). Alloy 625 is resistant to IASCC. Microstructural, microchemical, and deformation studies were carried out. Irradiation of X-750 caused significant strengthening and ductility loss associated with formation of cavities and dislocation loops. High irradiation did not cause segregation in X-750. Irradiation of 625 resulted in formation of small dislocation loops and a fine body-centered-orthorhombic phase. The strengthening due to loops and precipitates was apparently offset in 625 by partial dissolution of {gamma} precipitates. Transmutation of boron to helium at grain boundaries, coupled with matrix strengthening, is believed to be responsible for IASCC in X-750, and the absence of these two effects results in superior IASCC resistance in 625.
Date: July 1, 1995
Creator: Bajaj, R.; Mills, W.J.; Lebo, M.R.; Hyatt, B.Z. & Burke, M.G.
Partner: UNT Libraries Government Documents Department

Void fraction measurements using neutron radiography

Description: Real-time neutron radiography is being evaluated for studying the dynamic behavior of two phase flow and for measuring void fraction in vertical and inclined water ducts. This technique provides a unique means of visualizing the behavior of fluid flow inside thick metal enclosures. To simulate vapor conditions encountered in a fluid flow duct, an air-water flow system was constructed. Air was injected into the bottom of the duct at flow rates up to 0.47 I/s (1 cfm). The water flow rate was varied between 0--3.78 I/m (0--1 gpm). The experiments were performed at the Pennsylvania State University nuclear reactor facility using a real-time neutron radiography camera. With a thermal neutron flux on the order of 10{sup 6}n/cm{sup 2}/s directed through the thin duct dimension, the dynamic behavior of the air bubbles was clearly visible through 5 cm (2 in.) thick aluminum support plates placed on both sides of the duct wall. Image analysis techniques were employed to extract void fractions from the data which was recorded on videotape. This consisted of time averaging 256 video frames and measuring the gray level distribution throughout the region. The distribution of the measured void fraction across the duct was determined for various air/water mixtures. Details of the results of experiments for a variety of air and water flow conditions are presented.
Date: December 31, 1992
Creator: Glickstein, S. S.; Vance, W. H. & Joo, H.
Partner: UNT Libraries Government Documents Department

Processing and properties of superclean ASTM A508 Cl. 4 forgings

Description: Steels with improved resistance to temper embrittlement are now being produced using ``superclean`` steelmaking technology. This technology involves the use of scrap control, proper electric arc furnace and ladle refining furnace practices to produce steel with very low Mn, Si, P, S and other residual impurities such as Sn, As and Sb. This technology has been applied on a production basis to modified ASTM A508 Cl- 4 material intended for high temperature pressure vessel forgings. Processing and properties of this superclean material are reviewed. In addition, the cleanliness and mechanical properties are compared to conventionally melted A508 Cl. 4 material. The ``superclean`` A508 Cl. 4 mod. was found to meet all specification requirements. In addition, the superclean material was found to possess superior upper shelf CVN properties, a lower FATT{sub 50} and NDTT, along with superior microcleanliness compared to conventional material. Finally, the superclean material was found to be immune to temper embrittlement based on the short-term embrittlement treatments examined.
Date: December 31, 1988
Creator: Hinkel, A. V.; Handerhan, K. J.; Manzo, G. J. & Simkins, G. P.
Partner: UNT Libraries Government Documents Department

Interface between computational fluid dynamics (CFD) and plant analysis computer codes

Description: Computational fluid dynamics (CFD) can provide valuable input to the development of advanced plant analysis computer codes. The types of interfacing discussed in this paper will directly contribute to modeling and accuracy improvements throughout the plant system and should result in significant reduction of design conservatisms that have been applied to such analyses in the past.
Date: November 1, 1993
Creator: Coffield, R. D.; Dunckhorst, F. F.; Tomlinson, E. T. & Welch, J. W.
Partner: UNT Libraries Government Documents Department

An approximate algorithm for the flux from a rectangular volume source

Description: An exact semi-analytic formula for the flux from a rectangular surface source with a slab shield has been derived and the required function table has been calculated. This formula is the basis for an algorithm which gives a good approximation for the flux from a rectangular volume source. No other hand calculation method for this source geometry is available in the literature.
Date: November 9, 1994
Creator: Wallace, O. J.
Partner: UNT Libraries Government Documents Department

The effect of water flow rate upon the environmentally-assisted cracking response of a low-alloy steel

Description: Effect of water flow rate on the environmentally-assisted cracking (EAC) response of a high-sulfur ferritic steel was studied at 243C. In contrast to earlier studies with compact-type specimens, this study employed relatively large tight semi-elliptical surface cracks tested under generally linear-elastic conditions. Flow velocities parallel to the crack as low as 1.68 {minus} 1.84 m/s were effective in mitigating EAC.
Date: September 1, 1994
Creator: James, L. A.; Wire, G. L. & Cullen, W. H.
Partner: UNT Libraries Government Documents Department

An extension of the formula of ONO and TSURO for the flux from a cylindrical source

Description: A semi-analytic approximate formula for the flux at a point outside the radial and axial extensions of a cylindrical source with an intervening slab shield perpendicular to the source axis has been derived, based on the work of Ono and Tsuro. The required function tables are available, and a detailed analysis of the error as a function of problem geometry has been calculated, so that this formula has a wide area of application. No other approximate calculation method for this case is available in the literature.
Date: August 1, 1994
Creator: Wallace, O. J.
Partner: UNT Libraries Government Documents Department

A new metallographic procedure for edge retention of enclosed surfaces

Description: Utilization of a low melting point, metallic alloy that on solidification has provided a reproducible means of preserving edges and accurately measuring deposits on surfaces mounted for metarographic study. In normal laboratory practice the electrically conducting mounting material generates no hazardous waste, needs no special equipment to prepare and is available commercially at a relatively reasonable price. Previous standard edge preservation techniques were found to be 90% inefficient from a time utilization view compared with the new procedure. This new mounting procedure has greatly improved the quality and efficiency of microstructural studies of all materials, especially those on the inside diameters of heat exchanger components. These studies have included reaction products, shallow creep cracks and deposits on tubing, for which the procedure has proved indispensable.
Date: August 1, 1994
Creator: Katz, O. M.
Partner: UNT Libraries Government Documents Department

Evaluation of the RELAP5/MOD3 multidimensional component model

Description: Accurate plenum predictions, which are directly related to the mixing models used, are an important plant modeling consideration because of the consequential impact on basic transient performance calculations for the integrated system. The effect of plenum is a time shift between inlet and outlet temperature changes to the particular volume. Perfect mixing, where the total volume interacts instantaneously with the total inlet flow, does not occur because of effects such as inlet/outlet nozzle jetting, flow stratification, nested vortices within the volume and the general three-dimensional velocity distribution of the flow field. The time lag which exists between the inlet and outlet flows impacts the predicted rate of temperature change experienced by various plant system components and this impacts local component analyses which are affected by the rate of temperature change. This study includes a comparison of two-dimensional plenum mixing predictions using CFD-FLOW3D, RELAP5/MOD3 and perfect mixing models. Three different geometries (flat, square and tall) are assessed for scalar transport times using a wide range of inlet velocity and isothermal conditions. In addition, the three geometries were evaluated for low flow conditions with the inlet flow experiencing a large step temperature decrease. A major conclusion from this study is that the RELAP5/MOD3 multidimensional component model appears to be adequately predicting plenum mixing for a wide range of thermal-hydraulic conditions representative of plant transients.
Date: August 1, 1994
Creator: Tomlinson, E. T.; Rens, T. E. & Coffield, R. D.
Partner: UNT Libraries Government Documents Department

End-of-life destructive examinations of Zircaloy maximum depletion blanket fuel plates from the Shippingport PWR Core 2

Description: Destructive examinations were performed on four Shippingport PWR Core 2 maximum fluence and depletion blanket plates for surface integrity, corrosion oxide thickness, and hydrogen absorption of the Zircaloy-4 cladding. The Shippingport PWR Core 2 operated for 23,360 effective full power hours (EFPH) (62,235 hot hours) at an average coolant temperature of 536{degrees}F (280{degrees}C) and a peak neutron flux of 0.6{times}10{sup 14}n/cm{sup 2}/s. The end-of-life examination program included measurements on three PWR-2 beta-quenched blanket fuel plates and one alpha-annealed blanket end plate. The examinations consisted of optical and scanning electron microscopy (SEM) inspections, direct metallographic oxide thickness measurements, and hydrogen extraction analyses on a joined element pair from the peak fluence (132{times}10{sup 20} n/cm{sup 2}), maximum depletion (13.5{times}10{sup 20} fissions/cc)PWR-2 blanket cluster.
Date: October 1, 1993
Creator: Clayton, J. C.; Kammenzind, B. F.; Senio, P. & Sherman, J.
Partner: UNT Libraries Government Documents Department

Monte Carlo simulation of gamma ray scanning gauge

Description: A gamma ray scanning gauge was simulated with Monte Carlo to study the properties of gamma scanning gauges and to resolve the counts coming from a {sup 235}U source from those coming from a contaminant ({sup 232}U) whose daughters emit high energy gamma rays. The simulation has been used to infer the amount of the {sup 232}U contaminant in a {sup 235}U source to select the best size for the NaI(Tl) detector crystal to minimize the effect of the contaminant. The results demonstrate that Monte Carlo simulation provides a systematic tool for designing a gauge with desired properties and for estimating properties of the gamma source from measured count rates.
Date: December 31, 1990
Creator: Hartfield, G. L.; Freeman, L. B.; Dei, D. E.; Emert, C. J.; Glickstein, S. S.; Kahler, A. C. et al.
Partner: UNT Libraries Government Documents Department

Characterization and modeling of the heat source

Description: A description of the input energy source is basic to any numerical modeling formulation designed to predict the outcome of the welding process. The source is fundamental and unique to each joining process. The resultant output of any numerical model will be affected by the initial description of both the magnitude and distribution of the input energy of the heat source. Thus, calculated weld shape, residual stresses, weld distortion, cooling rates, metallurgical structure, material changes due to excessive temperatures and potential weld defects are all influenced by the initial characterization of the heat source. Understandings of both the physics and the mathematical formulation of these sources are essential for describing the input energy distribution. This section provides a brief review of the physical phenomena that influence the input energy distributions and discusses several different models of heat sources that have been used in simulating arc welding, high energy density welding and resistance welding processes. Both simplified and detailed models of the heat source are discussed.
Date: October 1, 1993
Creator: Glickstein, S. S. & Friedman, E.
Partner: UNT Libraries Government Documents Department