415 Matching Results

Search Results

Advanced search parameters have been applied.

81.114- University Reactor Infrastructure and Education Support / Prompt Gamma-ray Activation Analysis of Lithioum Ion Battery Cathodes

Description: This project focuses on the use of the Prompt Gamma-ray Activation Analysis (PGAA) technique available at the Nuclear Engineering Teaching Laboratory of the University of Texas at Austin to precisely determine the hydrogen (proton) contents in layered oxide cathode samples obtained by chemical lithium extraction in order to obtain a better understanding of the factors limiting the practical capacities and overall performance of lithium ion battery cathodes. The project takes careful precautionary experimental measures to avoid proton contamination both from solvents used in chemical delithiation and from ambient moisture. The results obtained from PGAA are complemented by the data obtained from other techniques such as thermogravimetric analysis, redox titration, atomic absorption spectroscopy, X-ray diffraction, and mass spectroscopic analysis of the evolved gas on heating. The research results broaden our understanding of the structure-property-performance relationships of lithium ion battery cathodes and could aid the design and development of new better performing lithium ion batteries for consumer (portable and electric vehicles), military, and space applications.
Date: November 11, 2006
Creator: Manthiram, Arumugam & Landsberger, S.
Partner: UNT Libraries Government Documents Department

The Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

Description: Work at carried out at ORNL since the inception of the project has served to demonstrate that the calix[4]pyrroles from the co-P.I.'s laboratory at the Univ. of Texas strongly enhance the extraction of sulfate by tricaprylmethylammonium nitrate or chloride in the presence of excess nitrate and chloride. Similar results were found in the case of the tetraamide macrocycles synthesized in the Bowman-James laboratory (Univ. of Kansas). Effort at the Univ. of Texas thus focused on generating new pyrrole-amide macrocycles that might combine the most favorable aspects of the calixpyrroles and the tetraamides. This culminated in the synthesis of several new receptors, which provided a ''matched set'' from whence insights into anion recognition could be inferred. As can be inferred from the data summarized in Table 1, small adjustments in the structure allow for a fine-tuning of the anion binding properties in favor of sulfate recognition, or in the case of injudicious modifications, selectivities that favor completely different classes of anionic substrates.
Date: June 1, 2005
Creator: Sessler, Jonathan L.
Partner: UNT Libraries Government Documents Department

FINAL REPORT: Scalable Methods for Electronic Excitations and Optical Responses of Nanostructures: Mathematics to Algorithms to Observables

Description: Work in nanoscience has increased substantially in recent years owing to its potential technological applications and to fundamental scientific interest. A driving force for this activity is to capitalize on new phenomena that occurs at the nanoscale. For example, the physical confinement of electronic states, i.e., quantum confinement, can dramatically alter the electronic and optical properties of matter. A prime example of this occurs for the optical properties of nanoscale crystals such as those composed of elemental silicon. Silicon in the bulk state is optically inactive due to the small size of the optical gap, which can only be accessed by “indirect” transitions. However, at the nanoscale, this material becomes optically active. The size of the optical gap is increased by confinement and the conservation of crystal momentum ceases to hold, resulting in the viability of indirect transitions. Our work associated with this grant has focused on developing new scalable algorithms for describing the electronic and optical properties of matter at the nanoscale such as nano structures of silicon and related semiconductor properties.
Date: April 1, 2013
Creator: Chelikowsky, James R
Partner: UNT Libraries Government Documents Department

Nano-mechanics of Tunable Adhesion using Non Covalent Forces

Description: The objective of this program was to examine, via experiment and atomistic and continuum analysis, coordinated noncovalent bonding over a range of length scales with a view to obtaining modulated, patterned and reversible bonding at the molecular level. The first step in this project was to develop processes for depositing self-assembled monolayers (SAMs) bearing carboxylic acid and amine moieties on Si (111) surfaces and probe tips of an interfacial force microscope (IFM). This allowed the adhesive portion of the interactions between functionalized surfaces to be fully captured in the force-displacement response (force profiles) that are measured by the IFM. The interactionswere extracted in the form of traction-separation laws using combined molecular and continuum stress analyses. In this approach, the results of molecular dynamics analyses of SAMs subjected to simple stress states are used to inform continuum models of their stress-strain behavior. Continuum analyses of the IFM experiment were then conducted, which incorporate the stress-strain behavior of the SAMs and traction-separation relations that represent the interactions between the tip and functionalized Si surface. Agreement between predicted and measured force profiles was taken to imply that the traction-separation relations have been properly extracted. Scale up to larger contact areas was considered by forming Si/SAM/Si sandwiches and then separating them via fracture experiments. The mode 1 traction-separation relations have been extracted using fracture mechanics concepts under mode 1 and mixed-mode conditions. Interesting differences were noted between the three sets of traction-separation relations.
Date: September 8, 2012
Creator: Liechti, Kenneth
Partner: UNT Libraries Government Documents Department

Final Technical Report

Description: This report summarizes many of the projects, and lists all of the publications and persons trained with support from the grant.
Date: April 21, 2011
Creator: Herrin, David L.
Partner: UNT Libraries Government Documents Department

Techno-economic Modeling of the Integration of 20% Wind and Large-scale Energy Storage in ERCOT by 2030

Description: This study’s objective is to examine interrelated technical and economic avenues for the Electric Reliability Council of Texas (ERCOT) grid to incorporate up to and over 20% wind generation by 2030. Our specific interests are to look at the factors that will affect the implementation of both high level of wind power penetration (> 20% generation) and installation of large scale storage.
Date: December 21, 2012
Creator: Baldick, Ross; Webber, Michael; King, Carey; Garrison, Jared; Cohen, Stuart & Lee, Duehee
Partner: UNT Libraries Government Documents Department

Final Report

Description: Under our grant, DE-FG02-03ER15480, "Early transition metal oxides as catalysts: crossing scales from clusters to single crystals to functioning materials," catalytic activity of high surface area, powdered transition metal oxides (TMO, e.g. vanadium, niobium, molybdenum, and tungsten) supported on Al2O3, SiO2, ZrO2 and TiO2 have been extensively studied. In contrast, virtually no studies have been conducted for TMOs supported on well-ordered, single-crystalline oxides. This is largely due to a number of experimental difficulties related to the preparation of well-ordered oxide surfaces and to the charging problems associated with electron based probes on insulators. In our experiments we have selected TiO2(110) as a well-ordered substrate. TiO2(110) is a semiconductor (EG = 3.0 eV) and as such it has been extensively studied using ensemble averaged, as well as atomically resolved probes.1 In this work our goal was to create a well characterized, WO3/TiO2(110) model catalyst and interrogate its chemical activity for reactions of interest to this program. Initial studies of the chemical activity of the WO3 clusters on TiO2(110) focused on the partial oxidation of CH3OH. Only molecular desorption of CH3OH was observed. For 1 ML of CH3OH adsorbed on clean TiO2(110), the fraction of CH3OH desorbing from Ti4+ (250-400K) and BBO (150-250 K) sites is approximately the same, similar to H2O desorption. For CH3OH desorption from WO3/TiO2(110), a larger fraction of CH3OH desorbs from oxygen terminated sites, suggesting that the Ti4+ sites were covered by WO3. Current studies of alcohol oxidation reactions focus on the higher alcohols, such as 2-propanol and 2?butanol. In other studies, we have explored the adsorption of formaldehyde as one of the potential products in the partial oxidation of CH3OH. A catalytic polymerization reaction resulting in the formation of trioxane (paraformaldehyde) was observed.
Date: April 24, 2007
Creator: White, John M.
Partner: UNT Libraries Government Documents Department

The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE)

Description: The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE) will be held June 8-12, 2005 at the University of Texas at Austin. Exciting new and ongoing discoveries show significant regulation of gene expression occurs after transcription. These post-transcriptional control events in plants range from subtle regulation of transcribed genes and phosphorylation, to the processes of gene regulation through small RNAs. This meeting will focus on the regulatory role of RNA, from transcription, through translation and finally degradation. The cross-disciplinary design of this meeting is necessary to encourage interactions between researchers that have a common interest in post-transcriptional gene expression in plants. By bringing together a diverse group of plant molecular biologist and biochemists at all careers stages from across the world, this meeting will bring about more rapid progress in understanding how plant genomes work and how genes are finely regulated by post-transcriptional processes to ultimately regulate cells.
Date: June 1, 2006
Creator: Browning, Karen S.; Petrocek, Marie & Bartel, Bonnie
Partner: UNT Libraries Government Documents Department

Interaction of High Intensity Electromagnetic Waves with Plasmas

Description: The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.
Date: October 3, 2008
Creator: Shvets, G.
Partner: UNT Libraries Government Documents Department

CO2 Capture by Absorption with Potassium Carbonate

Description: The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The pilot plant data have been reconciled using 17% inlet CO{sub 2}. A rate-based model demonstrates that the stripper is primarily controlled by liquid film mast transfer resistance, with kinetics at vacuum and diffusion of reactants and products at normal pressure. An additional major unknown ion, probably glyoxylate, has been observed in MEA degradation. Precipitation of gypsum may be a feasible approach to removing sulphate from amine solutions and providing for simultaneous removal of CO{sub 2} and SO{sub 2}. Corrosion of carbon steel in uninhibited MEA solution is increased by increased amine concentration, by addition of piperazine, and by greater CO{sub 2} loading.
Date: July 28, 2006
Creator: Rochelle, Gary T.; Chen, Eric; Oyenekan, Babatunde; Sexton, Andrew; Davis, Jason; Hilliard, Marcus et al.
Partner: UNT Libraries Government Documents Department

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report

Description: The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and ...
Date: February 28, 2013
Creator: Hardage, Bob A.; DeAngelo, Michael V.; Ermolaeva, Elena; Hardage, Bob A.; Remington, Randy; Sava, Diana et al.
Partner: UNT Libraries Government Documents Department

Cellulose Synthesizing Complexes in Vascular Plants and Procaryotes

Description: Continuing the work initiated under DE-FG03-94ER20145, the following major accomplishments were achieved under DE-FG02-03ER15396 from 2003-2007: (a) we purified the acsD gene product of the Acetobacter cellulose synthase operon as well as transferred the CesA cellulose gene from Gossypium into E. coli in an attempt to crystallize this protein for x-ray diffraction structural analysis; however, crystallization attempts proved unsuccessful; (b) the Acetobacter cellulose synthase operon was successfully incorporated into Synechococcus, a cyanobacterium2; (c) this operon in Synechococcus was functionally expressed; (d) we successfully immunolabeled Vigna cellulose and callose synthase components and mapped their distribution before and after wounding; (e) we developed a novel method to produce replicas of cellulose synthases in tobacco BY-2 cells, and we demonstrated the cytoplasmic domain of the rosette TC; (f) from the moss Physcomitrella, we isolated two full-length cDNA sequences of cellulose synthase (PpCesA1 and PpCesA2) and attempted to obtain full genomic DNA sequences; (g) we examined the detailed molecular structure of a new form of non-crystalline cellulose known as nematic ordered cellulose (=NOC)3.
Date: July 7, 2009
Creator: Brown, Richard M., Jr. & Saxena, Inder Mohan
Partner: UNT Libraries Government Documents Department

Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the U.S.

Description: Large volumes of oil and gas remain in the mature basins of North America. This is nowhere more true than in the Permian Basin of Texas and New Mexico. A critical barrier to recovery of this vast remaining resource, however, is information. Access to accurate geological data and analyses of the controls of hydrocarbon distribution is the key to the knowledge base as well as the incentives needed by oil and gas companies. The goals of this project were to collect, analyze, synthesize, and deliver to industry and the public fundamental information and data on the geology of oil and gas systems in the Permian Basin. This was accomplished in two ways. First we gathered all available data, organized it, and placed it on the web for ready access. Data include core analysis data, lists of pertinent published reports, lists of available cores, type logs, and selected PowerPoint presentations. We also created interpretive data such as type logs, geological cross sections, and geological maps and placed them in a geospatially-registered framework in ARC/GIS. Second, we created new written syntheses of selected reservoir plays in the Permian basin. Although only 8 plays were targeted for detailed analysis in the project proposal to DOE, 14 were completed. These include Ellenburger, Simpson, Montoya, Fusselman, Wristen, Thirtyone, Mississippian, Morrow, Atoka, Strawn, Canyon/Cisco, Wolfcamp, Artesia Group, and Delaware Mountain Group. These fully illustrated reports include critical summaries of published literature integrated with new unpublished research conducted during the project. As such these reports provide the most up-to-date analysis of the geological controls on reservoir development available. All reports are available for download on the project website and are also included in this final report. As stated in our proposal, technology transfer is perhaps the most important component of the project. In addition to providing direct ...
Date: September 30, 2008
Creator: Jackson, John & Jackson, Katherine
Partner: UNT Libraries Government Documents Department

Modeling Wettability Alteration using Chemical EOR Processes in Naturally Fractured Reservoirs

Description: The objective of our search is to develop a mechanistic simulation tool by adapting UTCHEM to model the wettability alteration in both conventional and naturally fractured reservoirs. This will be a unique simulator that can model surfactant floods in naturally fractured reservoir with coupling of wettability effects on relative permeabilities, capillary pressure, and capillary desaturation curves. The capability of wettability alteration will help us and others to better understand and predict the oil recovery mechanisms as a function of wettability in naturally fractured reservoirs. The lack of a reliable simulator for wettability alteration means that either the concept that has already been proven to be effective in the laboratory scale may never be applied commercially to increase oil production or the process must be tested in the field by trial and error and at large expense in time and money. The objective of Task 1 is to perform a literature survey to compile published data on relative permeability, capillary pressure, dispersion, interfacial tension, and capillary desaturation curve as a function of wettability to aid in the development of petrophysical property models as a function of wettability. The new models and correlations will be tested against published data. The models will then be implemented in the compositional chemical flooding reservoir simulator, UTCHEM. The objective of Task 2 is to understand the mechanisms and develop a correlation for the degree of wettability alteration based on published data. The objective of Task 3 is to validate the models and implementation against published data and to perform 3-D field-scale simulations to evaluate the impact of uncertainties in the fracture and matrix properties on surfactant alkaline and hot water floods.
Date: September 30, 2007
Creator: Delshad, Mojdeh; Pope, Gary A. & Sepehrnoori, Kamy
Partner: UNT Libraries Government Documents Department

Novel Fouling-Reducing Coatings for Ultrafiltration, Nanofiltration, and Reverse Osmosis Membranes

Description: Polymeric membranes could potentially be the most flexible and viable long-term strategy for treatment of produced water from oil and gas production. However, widespread use of membranes, including reverse osmosis (RO) membranes, for produced water purification is hindered due to fouling caused by the impurities present in the water. Fouling of RO membranes is likely caused by surface properties including roughness, hydrophilicity, and charge, so surface modification is the most widely considered approach to improve the fouling properties of current RO membranes. This project focuses on two main approaches to surface modification: coating and grafting. Hydrophilic coating and grafting materials based on poly(ethylene glycol) (PEG) are applied to commercial RO membranes manufactured by Dow FilmTec and GE. Crossflow filtration experiments are used to determine the fouling resistance of modified membranes, and compare their performance to that of unmodified commercial RO membranes. Grafting and coating are shown to be two alternative methods of producing modified membranes with improved fouling resistance.
Date: August 31, 2008
Creator: Freeman, Benny
Partner: UNT Libraries Government Documents Department

Origin of Scale-Dependent Dispersivity and Its Implications For Miscible Gas Flooding

Description: Dispersive mixing has an important impact on the effectiveness of miscible floods. Simulations routinely assume Fickian dispersion, yet it is well established that dispersivity depends on the scale of measurement. This is one of the main reasons that a satisfactory method for design of field-scale miscible displacement processes is still not available. The main objective of this project was to improve the understanding of the fundamental mechanisms of dispersion and mixing, particularly at the pore scale. To this end, microsensors were developed and used in the laboratory to measure directly the solute concentrations at the scale of individual pores; the origin of hydrodynamic dispersion was evaluated from first principles of laminar flow and diffusion at the grain scale in simple but geometrically completely defined porous media; techniques to use flow reversal to distinguish the contribution to dispersion of convective spreading from that of true mixing; and the field scale impact of permeability heterogeneity on hydrodynamic dispersion was evaluated numerically. This project solved a long-standing problem in solute transport in porous media by quantifying the physical basis for the scaling of dispersion coefficient with the 1.2 power of flow velocity. The researchers also demonstrated that flow reversal uniquely enables a crucial separation of irreversible and reversible contributions to mixing. The interpretation of laboratory and field experiments that include flow reversal provides important insight. Other advances include the miniaturization of long-lasting microprobes for in-situ, pore-scale measurement of tracers, and a scheme to account properly in a reservoir simulator (grid-block scale) for the contributions of convective spreading due to reservoir heterogeneity and of mixing.
Date: September 30, 2008
Creator: Bryant, Steven; Johns, Russ; Lake, Larry & Harmon, Thomas
Partner: UNT Libraries Government Documents Department

PH Sensitive Polymers for Improving Reservoir Sweep and Conformance Control in Chemical Flooring

Description: There is an increasing opportunity to recover bypassed oil from depleted, mature oilfields in the US. The recovery factor in many reservoirs is low due to inefficient displacement of the oil by injected fluids (typically water). The use of chemical flooding methods to increase recovery efficiencies is severely constrained by the inability of the injected chemicals to contact the bypassed oil. Low sweep efficiencies are the primary cause of low oil recoveries observed in the field in chemical flooding operations even when lab studies indicate high oil recovery efficiency. Any technology that increases the ability of chemical flooding agents to better contact the remaining oil and reduce the amount of water produced in conjunction with the produced oil will have a significant impact on the cost of producing oil domestically in the US. This translates directly into additional economically recoverable reserves, which extends the economic lives of marginal and mature wells. The objective of this research project was to develop a low-cost, pH-triggered polymer for use in IOR processes to improve reservoir sweep efficiency and reservoir conformance in chemical flooding. Rheological measurements made on the polymer solution, clearly show that it has a low viscosity at low pH and exhibits a sudden increase in viscosity (by 2 orders of magnitude or more) at a pH of 3.5 to 4. This implies that the polymer would preferentially flow into zones containing water since the effective permeability to water is highest in these zones. As the pH of the zone increases due to the buffering capacity of the reservoir rock, the polymer solution undergoes a liquid to gel transition causing a sharp increase in the viscosity of the polymer solution in these zones. This allows operationally robust, in-depth conformance treatment of such water bearing zones and better mobility control. The rheological properties ...
Date: March 31, 2008
Creator: Sharma, Mukul; Bryant, Steven & Huh, Chun
Partner: UNT Libraries Government Documents Department

Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

Description: The major thrust of this project, led by the University of Kansas (Prof. Kristin Bowman-James), entails an exploration of the basic determinants of anion recognition and their application to the design, synthesis, and testing of novel sulfate extractants. A key scientific inspiration for the work comes from the need, codified in simple-to-appreciate terms by the Oak Ridge National Laboratory component of the team (viz. Dr. Bruce Moyer), for chemical entities that can help in the extractive removal of species that have low solubilities in borosilicate glass. Among such species, sulfate anion, has been identified as particularly insidious. Its presence interferes with the vitrification process, thus rendering the remediation of tank waste from, e.g., the Hanford site far more difficult and expensive. The availability of effective extractants, that would allow for the separation of separating sulfate from the major competing anions in the waste, especially nitrate, could allow for pre-vitrification removal of sulfate via liquid-liquid extraction. The efforts at The University of Texas, the subject of this report, have thus concentrated on the development of new sulfate receptors. These systems are designed to increase our basic understanding of anion recognition events and set the stage for the development of viable sulfate anion extractants. In conjunction with the Oak Ridge National Laboratory (ORNL) members of the research team, several of these new receptors were studied as putative extractants, with two of the systems being shown to act as promising synergists for anion exchange.
Date: September 21, 2007
Creator: Sessler, Jonathan L.
Partner: UNT Libraries Government Documents Department

Volmer-Weber Growth of Nanoscale Self-Assembled Quantum Dots

Description: Our research has focused on the fundamental understanding of the physical mechanisms and experimental methodologies to probe various growth conditions, their effects on density, size uniformity, and spatial organization of self-assembled quantum dots (SAQDs). Theoretical models and numerical simulations have been developed to understand the nonlinear dynamics of surface pattern evolution and self assembly processes. Fabrication processes of semiconductor and metal SAQDs on high-k dielectrics have been developed, which have enabled the technology development of high-speed, low-power nonvolatile memory devices for nanoelectronics applications. Over the four years of the project, six graduate students have been trained in this research project, and four of them have graduated with PhD degrees. Our research has been reported in 11 journal articles. Both PIs and their students have given numerous presentations at national/international conferences as well as invited seminars. A list of publications and presentations is attached to the end of this report.
Date: August 15, 2009
Creator: Huang, Rui
Partner: UNT Libraries Government Documents Department

Combined Borehole Seismic and Electromagnetic Inversion For High-Resolution Petrophysical Assessment Of Hydocarbon Reservoirs

Description: This report summarizes the work performed between January 2005 and December 2007, under DOE research contract DE-FC26-04NT15507. The project is was performed by the Center for Petroleum and Geosystems Engineering of The University of Texas at Austin and Lawrence Berkeley National Laboratory under the auspices of the National Energy Technology Office (NETL) and the Strategic Center for Natural Gas and Oil (SCNGO). During the three-year project, we developed new methods to combine borehole sonic and electromagnetic (EM) measurements for the improved assessment of elastic and petrophysical properties of rock formations penetrated by a well. Sonic measurements consisted of full waveform acoustic amplitudes acquired with monopole and dipole sources, whereas EM measurements consisted of frequency-domain voltages acquired with multi-coil induction systems. The combination of sonic and EM measurements permitted the joint estimation of elastic and petrophysical properties in the presence of mud-filtrate invasion. It was conclusively shown that the combined interpretation of sonic and EM measurements reduced non-uniqueness in the estimation of elastic and petrophysical properties and improved the spatial resolution of the estimations compared to estimations yielded separately from the two types of measurements. Moreover, this approach enabled the assessment of dynamic petrophysical properties such as permeability, as it incorporated the physics of mud-filtrate invasion in the interpretation of the measurements. The first part of the project considered the development of fast and reliable numerical algorithms to simulate borehole sonic waveforms in 2D, 3D, and radial 1D media. Such algorithms were subsequently used in the quantitative estimation of elastic properties jointly from borehole sonic and EM measurements. In the second part of the project we developed a new algorithm to estimate water saturation, porosity, and dry-rock elastic moduli jointly from borehole sonic and EM measurements. This algorithm assumed radial 1D variations of fluid saturation due to mud-filtrate invasion. Subsequently, we ...
Date: December 31, 2008
Creator: Torres-Verdin, Carlos; Hoversten, G. Michael; Lee, Ki Ha; Newman, Gregory & Nihei, Kurt
Partner: UNT Libraries Government Documents Department

A Comprehensive Statistically-Based Method to Interpret Real-Time Flowing Measurements

Description: With the recent development of temperature measurement systems, continuous temperature profiles can be obtained with high precision. Small temperature changes can be detected by modern temperature measuring instruments such as fiber optic distributed temperature sensor (DTS) in intelligent completions and will potentially aid the diagnosis of downhole flow conditions. In vertical wells, since elevational geothermal changes make the wellbore temperature sensitive to the amount and the type of fluids produced, temperature logs can be used successfully to diagnose the downhole flow conditions. However, geothermal temperature changes along the wellbore being small for horizontal wells, interpretations of a temperature log become difficult. The primary temperature differences for each phase (oil, water, and gas) are caused by frictional effects. Therefore, in developing a thermal model for horizontal wellbore, subtle temperature changes must be accounted for. In this project, we have rigorously derived governing equations for a producing horizontal wellbore and developed a prediction model of the temperature and pressure by coupling the wellbore and reservoir equations. Also, we applied Ramey's model (1962) to the build section and used an energy balance to infer the temperature profile at the junction. The multilateral wellbore temperature model was applied to a wide range of cases at varying fluid thermal properties, absolute values of temperature and pressure, geothermal gradients, flow rates from each lateral, and the trajectories of each build section. With the prediction models developed, we present inversion studies of synthetic and field examples. These results are essential to identify water or gas entry, to guide flow control devices in intelligent completions, and to decide if reservoir stimulation is needed in particular horizontal sections. This study will complete and validate these inversion studies.
Date: January 15, 2007
Creator: Yoshioka, Keita; Dawkrajai, Pinan; Romero, Analis A.; Zhu, Ding; Hill, A. D. & Lake, Larry W.
Partner: UNT Libraries Government Documents Department

Development of Science-Based Permitting Guidance for Geological Sequestration of CO2 in Deep Saline Aquifers Based on Modeling and Risk Assessment

Description: Underground carbon storage may become one of the solutions to address global warming. However, to have an impact, carbon storage must be done at a much larger scale than current CO{sub 2} injection operations for enhanced oil recovery. It must also include injection into saline aquifers. An important characteristic of CO{sub 2} is its strong buoyancy--storage must be guaranteed to be sufficiently permanent to satisfy the very reason that CO{sub 2} is injected. This long-term aspect (hundreds to thousands of years) is not currently captured in legislation, even if the U.S. has a relatively well-developed regulatory framework to handle carbon storage, especially in the operational short term. This report proposes a hierarchical approach to permitting in which the State/Federal Government is responsible for developing regional assessments, ranking potential sites (''General Permit'') and lessening the applicant's burden if the general area of the chosen site has been ranked more favorably. The general permit would involve determining in the regional sense structural (closed structures), stratigraphic (heterogeneity), and petrophysical (flow parameters such as residual saturation) controls on the long-term fate of geologically sequestered CO{sub 2}. The state-sponsored regional studies and the subsequent local study performed by the applicant will address the long-term risk of the particular site. It is felt that a performance-based approach rather than a prescriptive approach is the most appropriate framework in which to address public concerns. However, operational issues for each well (equivalent to the current underground injection control-UIC-program) could follow regulations currently in place. Area ranking will include an understanding of trapping modes. Capillary (due to residual saturation) and structural (due to local geological configuration) trappings are two of the four mechanisms (the other two are solubility and mineral trappings), which are the most relevant to the time scale of interest. The most likely pathways for leakage, if ...
Date: June 30, 2006
Creator: Nicot, Jean-Philippe; Bouroullec, Renaud; Castellanos, Hugo; Hovorka, Susan; Lakshminarasimhan, Srivatsan & Paine, Jeffrey
Partner: UNT Libraries Government Documents Department

Integrated, Multi-Scale Characterization of Imbibition and Wettability Phenomena Using Magnetic Resonance and Wide-Band Dielectric Measurements

Description: The petrophysical properties of rocks, particularly their relative permeability and wettability, strongly influence the efficiency and the time-scale of all hydrocarbon recovery processes. However, the quantitative relationships needed to account for the influence of wettability and pore structure on multi-phase flow are not yet available, largely due to the complexity of the phenomena controlling wettability and the difficulty of characterizing rock properties at the relevant length scales. This project brings together several advanced technologies to characterize pore structure and wettability. Grain-scale models are developed that help to better interpret the electric and dielectric response of rocks. These studies allow the computation of realistic configurations of two immiscible fluids as a function of wettability and geologic characteristics. These fluid configurations form a basis for predicting and explaining macroscopic behavior, including the relationship between relative permeability, wettability and laboratory and wireline log measurements of NMR and dielectric response. Dielectric and NMR measurements have been made show that the response of the rocks depends on the wetting and flow properties of the rock. The theoretical models can be used for a better interpretation and inversion of standard well logs to obtain accurate and reliable estimates of fluid saturation and of their producibility. The ultimate benefit of this combined theoretical/empirical approach for reservoir characterization is that rather than reproducing the behavior of any particular sample or set of samples, it can explain and predict trends in behavior that can be applied at a range of length scales, including correlation with wireline logs, seismic, and geologic units and strata. This approach can substantially enhance wireline log interpretation for reservoir characterization and provide better descriptions, at several scales, of crucial reservoir flow properties that govern oil recovery.
Date: September 30, 2007
Creator: Sharma, Mukul M.; Bryant, Steven L.; Torres-Verdin, Carlos & Hirasaki, George
Partner: UNT Libraries Government Documents Department

Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation

Description: The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b) Evaluate the capability of an SMZ/MBR system to remove carboxylates and BTEX from produced water in a field trial. Laboratory experiments were ...
Date: December 31, 2007
Creator: Katz, Lynn; Kinney, Kerry; Bowman, Robert; Sullivan, Enid; Kwon, Soondong; Darby, Elaine et al.
Partner: UNT Libraries Government Documents Department