230 Matching Results

Search Results

Advanced search parameters have been applied.

Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage

Description: GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.
Date: October 1, 2010
Partner: UNT Libraries Government Documents Department

Defining How a Microbial Cell Senses and Responds to a Redox Active Environment

Description: This grant was for four years, and the work was designed to look at the mechanisms of extracellular electron transfer by the dissimilatory iron reducing bacteria Shewanella oneidensis MR-1, and other closely related Shewanella strains and species. During this work, we defined many of the basic physiological and biochemical properties of the Shewanella group, Much of which was summarized in review articles. We also finished and published the genome sequence of strain MR-1, the first of the shewanellae to have its genome sequenced. Control at the transcriptional and translational level was studied in collaboration with colleagues at PNNL and ANL. We utilized synchrotron X-ray radiation to image both the bacteria and the metal oxide particles via a technique called STXM, synchrotron X-ray absorption (ref. No.9), and X-ray microbeam analysis. We purified several of the cytochromes involved with metal reduction, and improved gene annotation of the MR-1 genome. The conductive appendages (nanowires) of MR-1 were described and characterized. Comparative genomics and biochemistry revealed that the pathway for the utilization of N-acetyl glucosamine in the various strains of Shewanella exhibited great variability, and had a number of previously unknown genes.
Date: June 22, 2012
Creator: Nealson, Kenneth H.
Partner: UNT Libraries Government Documents Department

Genome-Facilitated Analyses of Geomicrobial Processes

Description: This project had the goal(s) of understanding the mechanism(s) of extracellular electron transport (EET) in the microbe Shewanella oneidensis MR-1, and a number of other strains and species in the genus Shewanella. The major accomplishments included sequencing, annotation, and analysis of more than 20 Shewanella genomes. The comparative genomics enabled the beginning of a systems biology approach to this genus. Another major contribution involved the study of gene regulation, primarily in the model organism, MR-1. As part of this work, we took advantage of special facilities at the DOE: e.g., the synchrotron radiation facility at ANL, where we successfully used this system for elemental characterization of single cells in different metabolic states (1). We began work with purified enzymes, and identification of partially purified enzymes, leading to initial characterization of several of the 42 c-type cytochromes from MR-1 (2). As the genome became annotated, we began experiments on transcriptome analysis under different conditions of growth, the first step towards systems biology (3,4). Conductive appendages of Shewanella, called bacterial nanowires were identified and characterized during this work (5, 11, 20,21). For the first time, it was possible to measure the electron transfer rate between single cells and a solid substrate (20), a rate that has been confirmed by several other laboratories. We also showed that MR-1 cells preferentially attach to cells at a given charge, and are not attracted, or even repelled by other charges. The interaction with the charged surfaces begins with a stimulation of motility (called electrokinesis), and eventually leads to attachment and growth. One of the things that genomics allows is the comparative analysis of the various Shewanella strains, which led to several important insights. First, while the genomes predicted that none of the strains looked like they should be able to degrade N-acetyl glucosamine (NAG), the monomer ...
Date: May 2, 2012
Creator: Nealson, Kenneth H.
Partner: UNT Libraries Government Documents Department

CO2 Sequestration in Coalbed Methane Reservoirs: Experimental Studies and Computer Simulations

Description: One of the approaches suggested for sequestering CO{sub 2} is by injecting it in coalbed methane (CBM) reservoirs. Despite its potential importance for CO{sub 2} sequestration, to our knowledge, CO{sub 2} injection in CBM reservoirs for the purpose of sequestration has not been widely studied. Furthermore, a key element missing in most of the existing studies is the comprehensive characterization of the CBM reservoir structure. CBM reservoirs are complex porous media, since in addition to their primary pore structure, generated during coal formation, they also contain a variety of fractures, which may potentially play a key role in CO{sub 2} sequestration, as they generally provide high permeability flow paths for both CO{sub 2} and CH{sub 4}. In this report we present an overview of our ongoing experimental and modeling efforts, which aim to investigate the injection, adsorption and sequestration of CO{sub 2} in CBM reservoirs, the enhanced CH{sub 4} production that results, as well as the main factors that affect the overall operation. We describe the various experimental techniques that we utilize, and discuss their range of application and the value of the data generated. We conclude with a brief overview of our modeling efforts aiming to close the knowledge gap and fill the need in this area.
Date: December 15, 2002
Creator: Sahimi, Muhammad & Tsotsis, Theodore T.
Partner: UNT Libraries Government Documents Department

Mathematical and Computational Tools for Predictive Simulation of Complex Coupled Systems under Uncertainty

Description: Methods and algorithms are developed to enable the accurate analysis of problems that exhibit interacting physical processes with uncertainties. These uncertainties can pertain either to each of the physical processes or to the manner in which they depend on each others. These problems are cast within a polynomial chaos framework and their solution then involves either solving a large system of algebraic equations or a high dimensional numerical quadrature. In both cases, the curse of dimensionality is manifested. Procedures are developed for the efficient evaluation of the resulting linear equations that advantage of the block sparse structure of these equations, resulting in a block recursive Schur complement construction. In addition, embedded quadratures are constructed that permit the evaluation of very high-dimensional integrals using low-dimensional quadratures adapted to particular quantities of interest. The low-dimensional integration is carried out in a transformed measure space in which the quantity of interest is low-dimensional. Finally, a procedure is also developed to discover a low-dimensional manifold, embedded in the initial high-dimensional one, in which scalar quantities of interest exist. This approach permits the functional expression of the reduced space in terms of the original space, thus permitting cross-scale sensitivity analysis.
Date: March 25, 2013
Creator: Ghanem, Roger
Partner: UNT Libraries Government Documents Department

Novel Anionic Clay Adsorbents for Boiler-Blow Down Waters Reclaim and Reuse

Description: Our goal in this study is to utilize novel anionic clay sorbents for treating and reclaiming/reusing power-plant effluents, in particular, boiler blow-down waters containing heavy metals, such as As and Se. Developing and using novel materials for such application is dictated by the challenge posed by reclaiming and recycling these too-clean-to-clean effluent streams, generated during electricity production, whose contaminant levels are in the ppm/ppb (or even less) trace levels. During the study model blow-down streams have been treated in batch experiments. Adsorption isotherms as a function of pH/temperature have been established for both As and Se. Adsorption rates have also measured as a function of concentration, temperature, pH, and space time. For both the equilibrium and rate measurements, we have studied the As/Se interaction, and competition from background anions. A homogeneous surface diffusion model is used to describe the experimental kinetic data. The estimated diffusivity values are shown to depend on the particle size. On the other hand, a model taking into account the polycrystalline nature of these adsorbent particles, and the presence of an intercrystallite porous region predicts correctly that the surface diffusivity is particle size independent. A mathematical model to describe flow experiments in packed-beds has also been developed during phase I of this project. The goal is to validate this model with flow experiments in packed-beds during the phase II of this project, to determine the adsorption capacity under flow conditions, and to compare it with the capacity estimated from the adsorption isotherms determined from the batch studies.
Date: December 1, 2005
Creator: Sahimi, Muhammad & Tsotsis, Theodore T.
Partner: UNT Libraries Government Documents Department

Technical Progress Report

Description: An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. The corona generator can also be used as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. Higher peak pressures and faster pressure rise times were realized consistently in all test chambers versus standard spark plug ignition. A test engine was purchased for the project that has two spark plug ports per cylinder to The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions including cylinder pressure monitoring. A ceramic corona electrode has been designed that fits in the new test engine and is capable of withstanding the pressures and temperatures encountered inside the combustion chamber. The corona ignition system was tested on the engine and an increase in both peak pressure and IMEP were seen in the initial test. There are issues that must be addressed before on-engine testing can continue such as EMF interference from the corona generator and electrical insulation on portions of the piston and cylinder head to prevent arcing. The EMF issue can be solved with proper shielding and grounding and various ceramic coatings are being researched for electrical insulation.
Date: August 26, 2004
Creator: Ronney, Paul D.
Partner: UNT Libraries Government Documents Department

Computational Biology Support: RECOMB Conference Series (Conference Support)

Description: This funding was support for student and postdoctoral attendance at the Annual Recomb Conference from 2001 to 2005. The RECOMB Conference series was founded in 1997 to provide a scientific forum for theoretical advances in computational biology and their applications in molecular biology and medicine. The conference series aims at attracting research contributions in all areas of computational molecular biology. Typical, but not exclusive, the topics of interest are: Genomics, Molecular sequence analysis, Recognition of genes and regulatory elements, Molecular evolution, Protein structure, Structural genomics, Gene Expression, Gene Networks, Drug Design, Combinatorial libraries, Computational proteomics, and Structural and functional genomics. The origins of the conference came from the mathematical and computational side of the field, and there remains to be a certain focus on computational advances. However, the effective use of computational techniques to biological innovation is also an important aspect of the conference. The conference had a growing number of attendees, topping 300 in recent years and often exceeding 500. The conference program includes between 30 and 40 contributed papers, that are selected by a international program committee with around 30 experts during a rigorous review process rivaling the editorial procedure for top-rate scientific journals. In previous years papers selection has been made from up to 130--200 submissions from well over a dozen countries. 10-page extended abstracts of the contributed papers are collected in a volume published by ACM Press and Springer, and are available at the conference. Full versions of a selection of the papers are published annually in a special issue of the Journal of Computational Biology devoted to the RECOMB Conference. A further point in the program is a lively poster session. From 120-300 posters have been presented each year at RECOMB 2000. One of the highlights of each RECOMB conference is a collection of nine ...
Date: June 15, 2006
Creator: Waterman, Michael
Partner: UNT Libraries Government Documents Department

Development of Structural Neurobiology and Genomics Programs in the Neurogenetic Institute

Description: The purpose of the DOE equipment-only grant was to purchase instrumentation in support of structural biology and genomics core facilities in the Zilkha Neurogenetic Institute (ZNI). The ZNI, a new laboratory facility (125,000 GSF) and a center of excellence at the Keck School of Medicine of USC, was opened in 2003. The goal of the ZNI is to recruit upwards of 30 new faculty investigators engaged in interdisciplinary research programs that will add breadth and depth to existing school strengths in neuroscience, epidemiology and genetics. Many of these faculty, and other faculty researchers at the Keck School will access structural biology and genomics facilities developed in the ZNI.
Date: November 10, 2006
Creator: Henderson, Brian E., M.D.
Partner: UNT Libraries Government Documents Department

Security and Policy for Group Collaboration

Description: “Security and Policy for Group Collaboration” was a Collaboratory Middleware research project aimed at providing the fundamental security and policy infrastructure required to support the creation and operation of distributed, computationally enabled collaborations. The project developed infrastructure that exploits innovative new techniques to address challenging issues of scale, dynamics, distribution, and role. To reduce greatly the cost of adding new members to a collaboration, we developed and evaluated new techniques for creating and managing credentials based on public key certificates, including support for online certificate generation, online certificate repositories, and support for multiple certificate authorities. To facilitate the integration of new resources into a collaboration, we improved significantly the integration of local security environments. To make it easy to create and change the role and associated privileges of both resources and participants of collaboration, we developed community wide authorization services that provide distributed, scalable means for specifying policy. These services make it possible for the delegation of capability from the community to a specific user, class of user or resource. Finally, we instantiated our research results into a framework that makes it useable to a wide range of collaborative tools. The resulting mechanisms and software have been widely adopted within DOE projects and in many other scientific projects. The widespread adoption of our Globus Toolkit technology has provided, and continues to provide, a natural dissemination and technology transfer vehicle for our results.
Date: July 31, 2006
Creator: Foster, Ian & Kesselman, Carl
Partner: UNT Libraries Government Documents Department

Collaborative Research: Simulation of Beam-Electron Cloud Interactions in Circular Accelerators Using Plasma Models

Description: Final Report for grant DE-FG02-06ER54888, "Simulation of Beam-Electron Cloud Interactions in Circular Accelerators Using Plasma Models" Viktor K. Decyk, University of California, Los Angeles Los Angeles, CA 90095-1547 The primary goal of this collaborative proposal was to modify the code QuickPIC and apply it to study the long-time stability of beam propagation in low density electron clouds present in circular accelerators. The UCLA contribution to this collaborative proposal was in supporting the development of the pipelining scheme for the QuickPIC code, which extended the parallel scaling of this code by two orders of magnitude. The USC work was as described here the PhD research for Ms. Bing Feng, lead author in reference 2 below, who performed the research at USC under the guidance of the PI Tom Katsouleas and the collaboration of Dr. Decyk The QuickPIC code [1] is a multi-scale Particle-in-Cell (PIC) code. The outer 3D code contains a beam which propagates through a long region of plasma and evolves slowly. The plasma response to this beam is modeled by slices of a 2D plasma code. This plasma response then is fed back to the beam code, and the process repeats. The pipelining is based on the observation that once the beam has passed a 2D slice, its response can be fed back to the beam immediately without waiting for the beam to pass all the other slices. Thus independent blocks of 2D slices from different time steps can be running simultaneously. The major difficulty was when particles at the edges needed to communicate with other blocks. Two versions of the pipelining scheme were developed, for the the full quasi-static code and the other for the basic quasi-static code used by this e-cloud proposal. Details of the pipelining scheme were published in [2]. The new version of QuickPIC was ...
Date: October 14, 2009
Creator: Katsouleas, Thomas & Decyk, Viktor
Partner: UNT Libraries Government Documents Department

Experimental Measurement of the Flow Field of Heavy Trucks

Description: Flat flaps that enclose the trailer base on the sides and top are known to reduce truck drag and reduce fuel consumption. Such flapped-truck geometries have been studied in laboratory wind tunnels and in field tests. A recent review of wind tunnel data for a variety of truck geometries and flow Reynolds numbers show roughly similar values of peak drag reduction, but differ in the determination of the optimum flap angle. Optimum angles lie in the range 12 degrees-20 degrees, and may be sensitive to Reynolds number and truck geometry. The present field test is undertaken to provide additional estimates of the magnitude of the savings to be expected on a typical truck for five flap angles 10, 13, 16, 19, and 22 degrees. The flaps are constructed from a fiberglass-epoxy-matrix material and are one-quarter of the base width in length (about 61 cm, or 2 feet). They are attached along the rear door hinge lines on either side of the trailer, so that no gap appears at the joint between the flap and the side of the trailer The flap angle is adjusted by means of two aluminum supports. The present test is performed on the NASA Crows Landing Flight Facility at the northern end of the San Joaquin valley in California. The main runway is approximately 2400 meters in length, and is aligned approximately in a north-south direction The test procedure is to make a series of runs starting at either end of the runway. All runs are initiated under computer control to accelerate the truck to a target speed of 60 mph (96 6 km/hr), to proceed at the target speed for a fixed distance, and to decelerate at the far end of the runway. During a run, the broadcast fuel rate, the engine rpm, forward speed, ...
Date: May 31, 2005
Creator: Browand, Fred & Radovich, Charles
Partner: UNT Libraries Government Documents Department

Integrated Genome-Based Studies of Shewanella Ecophysiology

Description: This project had as its goals the understanding of the ecophysiology of the genus Shewanella using various genomics approaches. As opposed to other programs involving Shewanella, this one branched out into the various areas in which Shewanella cells are active, and included both basic and applied studies. All of the work was, to some extent, related to the ability of the bacteria to accomplish electron exchange between the cell and solid state electron acceptors and/or electron donors, a process we call Extracellular Electron Transport, or EET. The major accomplishments related to several different areas: Basic Science Studies: 1. Genetics and genomics of nitrate reduction, resulting in elucidation of atypical nitrate reduction systems in Shewanella oneidensis (MR-1)[2]. 2. Influence of bacterial strain and growth conditions on iron reduction, showing that rates of reduction, extents of reduction, and the formation of secondary minerals were different for different strains of Shewanella [3,4,9]. 3. Comparative genomics as a tool for comparing metabolic capacities of different Shewanella strains, and for predicting growth and metabolism [6,10,15]. In these studies, collaboration with ORNL, PNNL, and 4. Basic studies of electron transport in strain MR-1, both to poised electrodes, and via conductive nanowires [12,13]. This included the first accurate measurements of electrical energy generation by a single cell during electrode growth [12], and the demonstration of electrical conductivity along the length of bacterial nanowires [13]. 5. Impact of surface charge and electron flow on cell movement, cell attachment, cell growth, and biofilm formation [7.18]. The demonstration that interaction with solid state electron acceptors resulted in increased motility [7] led to the description of a phenomenon called electrokinesis. The importance of this for biofilm formation and for electron flow was hypothesized by Nealson & Finkel [18], and is now under study in several laboratories. Applications: 1. Corrosion: Electron flow ...
Date: October 15, 2013
Creator: Nealson, Kenneth H.
Partner: UNT Libraries Government Documents Department

Novel Anionic Clay Adsorbents for Boiler-Blow-Down Waters Reclaim and Reuse

Description: Arsenic (As) and Selenium (Se) are found in water in the form of oxyanions. Relatively high concentrations of As and Se have been reported both in power plant discharges, as well as, in fresh water supplies. The International Agency for Research on Cancer currently classifies As as a group 1 chemical, that is considered to be carcinogenic to humans. In Phase I of this project we studied the adsorption of As and Se by uncalcined and calcined layered double hydroxide (LDH). The focus of the present work is a systematic study of the adsorption of As and Se by conditioned LDH adsorbents. Conditioning the adsorbent significantly reduced the Mg and Al dissolution observed with uncalcined and calcined LDH. The adsorption rates and isotherms have been investigated in batch experiments using particles of four different particle size ranges. As(V) adsorption is shown to follow a Sips-type adsorption isotherm. The As(V) adsorption rate on conditioned LDH increases with decreasing adsorbent particle size; the adsorption capacity, on the other hand, is independent of the particle size. A homogeneous surface diffusion model (HSDM) and a bi-disperse pore model (BPM) - the latter viewing the LDH particles as assemblages of microparticles and taking into account bulk diffusion in the intraparticle pore space, and surface diffusion within the microparticles themselves - were used to fit the experimental kinetic data. The HSDM estimated diffusivity values dependent on the particle size, whereas the BPM predicted an intracrystalline diffusivity, which is fairly invariant with particle size. The removal of As(V) on conditioned LDH adsorbents was also investigated in flow columns, where the impact of important solution and operational parameters such as influent As concentration, pH, sorbent particle size and flow rate were studied. An early breakthrough and saturation was observed at higher flow rates and at higher influent concentrations, ...
Date: January 8, 2010
Creator: Sahimi, Muhammad & Tsotsis, Theodore
Partner: UNT Libraries Government Documents Department

Reactions of Atoms and Radicals in Pulsed Molecular Beams

Description: The final report describes studies of unimolecular reactions of transient species and radicals relevant to combustion processes. Specifically, the dynamics of predissociation of free radicals for which multiple pathways, including molecular rearrangements, compete. These small, prototypical, systems are amenable to treatment by high level theory, and close collaboration with theory continues to be a cornerstone of the program. The chemistry of hydroxyalkyl radicals is important in atmospheric and combustion environments, because cleavage of the C-H and O-H bonds is implicated in the reactions of several atoms and radicals with alcohols and alkanes. In particular, the hydroxymethyl radical affords many opportunities to study both isomerization and dissociation on the ground and excited potential energy surfaces. During this funding period, high vibrational levels of the ground electronic state of the hydroxymethyl radicals were accessed in two ways: (1) by using internal conversion from the lowest excited electronic state, the 3s Rydberg state; and (2) via direct vibrational excitation of the hydroxymethyl radical accessed by pumping OH overtones as ''bright'' states. In the former method, levels that are {approx} 3 eV above the H + formaldehyde asymptote are reached. In the latter, the region of the dissociation barrier is gradually approached from below, while examining the role of energy flow from OH overtones to other vibrational levels. The first task was to characterize the electronic absorption of the radical, in order to develop diagnostics and reach the ground state via excitation of the lowest-lying state, the 3s Rydberg state. To this end, excitations to the three lowest 3s and 3p Rydberg states were studied and the dissociation channels identified. These were predominantly O-H and C-H fission, while isomerization to the methoxy radical was not observed. Collaborations with theory identified the molecular dynamics on the excited electronic potential energy surfaces and how the ground ...
Date: April 12, 2004
Creator: Reisler, H.
Partner: UNT Libraries Government Documents Department

Exploring Shared Memory Protocols in FLASH

Description: ABSTRACT The goal of this project was to improve the performance of large scientific and engineering applications through collaborative hardware and software mechanisms to manage the memory hierarchy of non-uniform memory access time (NUMA) shared-memory machines, as well as their component individual processors. In spite of the programming advantages of shared-memory platforms, obtaining good performance for large scientific and engineering applications on such machines can be challenging. Because communication between processors is managed implicitly by the hardware, rather than expressed by the programmer, application performance may suffer from unintended communication – communication that the programmer did not consider when developing his/her application. In this project, we developed and evaluated a collection of hardware, compiler, languages and performance monitoring tools to obtain high performance on scientific and engineering applications on NUMA platforms by managing communication through alternative coherence mechanisms. Alternative coherence mechanisms have often been discussed as a means for reducing unintended communication, although architecture implementations of such mechanisms are quite rare. This report describes an actual implementation of a set of coherence protocols that support coherent, non-coherent and write-update accesses for a CC-NUMA shared-memory architecture, the Stanford FLASH machine. Such an approach has the advantages of using alternative coherence only where it is beneficial, and also provides an evolutionary migration path for improving application performance. We present data on two computations, RandomAccess from the HPC Challenge benchmarks and a forward solver derived from LS-DYNA, showing the performance advantages of the alternative coherence mechanisms. For RandomAccess, the non-coherent and write-update versions can outperform the coherent version by factors of 5 and 2.5, respectively. In LS-DYNA, we obtain improvements of 18% on average using the non-coherent version. We also present data on the SpecOMP benchmarks, showing that the protocols have a modest overhead of less than 3% in applications where the alternative ...
Date: April 1, 2007
Creator: Horowitz, Mark; Kunz, Robert; Hall, Mary; Lucas, Robert & Chame, Jacqueline
Partner: UNT Libraries Government Documents Department

Conference Proposal for the Organization of ISCRE 15 [summary of results]

Description: Though ISCRE 15 goal was to emphasize the fundamentals, of equal importance were the technological advances currently shaping the future of the field. Topical areas for ISCRE 15 included: (1) Reactors for Materials Processing; (2) Waste Minimization and Remediation; (3) Environmentally Benign Processing; (4) Reactor Dynamics; (5) Reactor Control and Safety; (6) Reactor Scale-up and Economic Evaluation; (7) Computational and Modeling Aspects of Reaction/ Reactor Engineering; (8)Fluid-Solid Catalytic and Non-Catalytic Reaction Systems; and (9) Catalytic, Polymerization and Biochemical Reactors.
Date: July 1, 2000
Creator: Tsotsis, Theodore
Partner: UNT Libraries Government Documents Department

Characterization of Contaminant Transport Using Naturally-Occurring U-Series Disequilibria

Description: Study the migration of nuclear waste contaminants in subsurface fractured systems using naturally occurring uranium and thorium-series radionuclides as tracers under in-situ physico-chemical and hydrogeologic conditions. Radioactive disequilibria among members of these decay-series nuclides can provide information on the rates of adsorption-desorption and transport of contaminants as well as on fluid transport and rock dissolution in a natural setting.
Date: June 1, 2001
Creator: KU, TEH-LUNG
Partner: UNT Libraries Government Documents Department

CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

Description: An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.
Date: September 12, 2003
Creator: Ronney, Dr. Paul D.
Partner: UNT Libraries Government Documents Department

INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES

Description: This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.
Date: February 1, 2003
Creator: Yortsos, Yannis C.
Partner: UNT Libraries Government Documents Department

Program for Plasma-Based Concepts for Future High Energy Accelerators

Description: OAK B204 Program for Plasma-Based Concepts for Future High Energy Accelerators. The progress made under this program in the period since November 15, 2002 is reflected in this report. The main activities for this period were to conduct the first run of the E-164 high-gradient wakefield experiment at SLAC, to prepare for run 2 and to continue our collaborative effort with CERN to model electron cloud interactions in circular accelerators. Each of these is described. Also attached to this report are papers that were prepared or appeared during this period.
Date: September 25, 2003
Creator: Katsouleas, Thomas C. & Muggli, Patric
Partner: UNT Libraries Government Documents Department

Application and Network-Cognizant Proxies - Final Report

Description: OAK B264 Application and Network-Cognizant Proxies - Final Report. Current networks show increasing heterogeneity both in terms of their bandwidths/delays and the applications they are required to support. This is a trend that is likely to intensify in the future, as real-time services, such as video, become more widely available and networking access over wireless links becomes more widespread. For this reason they propose that application-specific proxies, intermediate network nodes that broker the interactions between server and client, will become an increasingly important network element. These proxies will allow adaptation to changes in network characteristics without requiring a direct intervention of either server or client. Moreover, it will be possible to locate these proxies strategically at those points where a mismatch occurs between subdomains (for example, a proxy could be placed so as to act as a bridge between a reliable network domain and an unreliable one). This design philosophy favors scalability in the sense that the basic network infrastructure can remain unchanged while new functionality can be added to proxies, as required by the applications. While proxies can perform numerous generic functions, such as caching or security, they concentrate here on media-specific, and in particular video-specific, tasks. The goal of this project was to demonstrate that application- and network-specific knowledge at a proxy can improve overall performance especially under changing network conditions. They summarize below the work performed to address these issues. Particular effort was spent in studying caching techniques and on video classification to enable DiffServ delivery. other work included analysis of traffic characteristics, optimized media scheduling, coding techniques based on multiple description coding, and use of proxies to reduce computation costs. This work covered much of what was originally proposed but with a necessarily reduced scope.
Date: March 24, 2003
Creator: Ortega, Antonio & Lee, Daniel C.
Partner: UNT Libraries Government Documents Department