8 Matching Results

Search Results

Advanced search parameters have been applied.

Final Scientific/Technical Report for "Strongly-Coupled Dusty Plasmas"

Description: The subject of the project is the basic-plasma physics topic of strongly-coupled plasmas, as studied experimentally using dusty plasmas. This topic is highly interdisciplinary, with significant overlap with astrophysics, space physics, and condensed matter physics. Among the successes of this project during the most recent four-year period are the 23 papers were produced for peer-reviewed scientific journals. These papers mostly report experiments, as well as some numerical simulations. Coauthors of the papers include collaborators in Germany, Hungary, and Russia, as well as the U.S. Research topics included traditional plasma physics themes such as transport, waves, instabilities, and experimental diagnostics. They also included interdisciplinary topics of melting (condensed matter physics) and rarefied gas dynamics (fluid mechanics). All of the research topics were chosen to have a high impact. Our success in achieving a high impact is demonstrated by the seven papers published in Physical Review Letters over a four-year period, and a significant number of invited talks. The project included a broader-impact element that included not only training of graduate students and public dissemination of research results, but also an outreach program. The outreach Included presentations motivated by the sound-wave experiments in this project for the 'Family Science Adventures' (for children and parents of Iowa City area) and hands-on experiments at a K12 school (3rd and 4th grades in 2007, and 5th and 6th grades in 2008).
Date: August 14, 2010
Creator: Goree, John
Partner: UNT Libraries Government Documents Department

Mitochondrial-Derived Oxidants and Cellular Responses to Low Dose/Low LET Ionizing Radiation

Description: Exposure to ionizing radiation results in the immediate formation of free radicals and other reactive oxygen species (ROS). It has been assumed that the subsequent injury processes leading to genomic instability and carcinogenesis following radiation, derive from the initial oxidative damage caused by these free radicals and ROS. It is now becoming increasingly obvious that metabolic oxidation/reduction (redox) reactions can be altered by irradiation leading to persistent increases in steady-state levels of intracellular free radicals and ROS that contribute to the long term biological effects of radiation exposure by causing chronic oxidative stress. The objective during the last period of support (DE-FG02-05ER64050; 5/15/05-12/31/09) was to determine the involvement of mitochondrial genetic defects in metabolic oxidative stress and the biological effects of low dose/low LET radiation. Aim 1 was to determine if cells with mutations in succinate dehydrogenase (SDH) subunits C and D (SDHC and SDHD in mitochondrial complex II) demonstrated increases in steady-state levels of reactive oxygen species (ROS; O2•- and H2O2) as well as demonstrating increased sensitivity to low dose/low LET radiation (10 cGy) in cultured mammalian cells. Aim #2 was to determine if mitochondrially-derived ROS contributed to increased sensitivity to low dose/low LET radiation in mammalian cells containing mutations in SDH subunits. Aim #3 was to determine if a causal relationship existed between increases in mitochondrial ROS production, alterations in electron transport chain proteins, and genomic instability in the progeny of irradiated cells. Evidence gathered in the 2005-2009 period of support demonstrated that mutations in genes coding for mitochondrial electron transport chain proteins (ETC); either Succinate Dehydrogenase (SDH) subunit C (SDHC) or subunit D (SDHD); caused increased ROS production, increased genomic instability, and increased sensitivity to low dose/low LET radiation that could be mitigated by over expression of the H2O2 metabolizing enzyme, catalase, and/or the mitochondrial form of ...
Date: November 9, 2009
Creator: Spitz, Douglas R.
Partner: UNT Libraries Government Documents Department

Final Scientific/Technical Report for "Forward Angle Physics at CMS"

Description: CMS will be used to study the reaction products from nuclear collisions of lead with lead at energies of 1100 TeV and also collisions between lighter elements. CMS is a huge detector array at the LHC (Large Hadron Collider), now under construction at CERN in Geneva, Switzerland. The emphasis in this work will be on the far-forward angles (close to the beam line) which has the highest density of products and for which the Univ. of Iowa group has made major contributions to the design and construction of the detectors (CMS-HF, CMS-ZDC). With a detailed knowledge of all of the forward detectors, this group is uniquely prepared to distinguish real physics from effects caused by peculiarities of the detectors. The work included finishing the detectors and getting them into operation and preparing to study data after the LHC restarts in 2010. The Iowa group also continued to develop improved detectors for use with upgrades to CMS and for other applications. The available energy is almost 30 times that from gold + gold at the present RHIC facility. The new energy regime will open a new window on hot and dense matter physics. The higher energy lengthens the lifetime of a quark gluon plasma and provides additional probes for studying this new form of matter. For example, there is abundant production of jets and heavy quarks with a large cross section for J/{Psi} and {Upsilon} production. The three states of the {Upsilon} are clearly resolved by CMS. The different 'melting' for members of the {Upsilon} family provides information about the nuclear medium. The much wider range of Q{sup 2} and x allow a major extension of the measurements at RHIC. This large increase in energy provides more than just an extension of RHIC results to higher energy. It is expected to ...
Date: November 17, 2010
Creator: Onel, Yasar
Partner: UNT Libraries Government Documents Department

Final Report for "Infrared Fixed Points in Multiflavor Lattice Gauge Theory"

Description: The goal of the grant was to apply methods that we have developed with spin and pure gauge models to models with dynamical fermions which are considered as candidates for an alternative to the Higgs mechanism. The work on SU(3) with fundamental quarks and with sextet quarks is described.
Date: September 27, 2013
Creator: Meurice, Yannick & Sinclair, Donald K.
Partner: UNT Libraries Government Documents Department

Final report: 'Rhodopseudomonas palustris' genome workshop to be held in Spring of 2001

Description: The ''Rhodopseudomonas palustris'' genome workshop took place in Iowa City on April 6-8, 2001. The purpose of the meeting was to instruct members of the annotation working group in approaches to accomplishing the 'human' phase of the 'R. palustris' genome annotation. A partial draft of a paper describing the 'Rhodopseudomonas palustris' genome has been written and a full version of the paper should be ready for submission by the end of the summer 2002.
Date: June 5, 2002
Creator: Harwood, Caroline S.
Partner: UNT Libraries Government Documents Department

Rhodopseudomonas palustris genome project. Final report

Description: Rhodopseudomonas palustris is a common soil and water bacterium that makes its living by converting sunlight to cellular energy and by absorbing atmospheric carbon dioxide and converting it to biomass. This microbe can also degrade and recycle components of the woody tissues of plants, wood being the most abundant polymer on earth. Because of its intimate involvement in carbon management and recycling, R. palustris was selected by the DOE Carbon Management Program to have its genome sequenced by the Joint Genome Institute (JGI). This award provided funds for the preparation of R. palustris genomic DNA which was then supplied to the JGI in sufficient amounts to enable the complete sequencing of the R. palustris genome. The PI also supplied the JGI with technical information about the molecular biology of R. palustris.
Date: November 22, 2000
Creator: Harwood, Caroline S.
Partner: UNT Libraries Government Documents Department