1 Matching Results

Search Results

Advanced search parameters have been applied.

Surface chemistry investigation of colloid transport in packed beds. Final report, August 1, 1989--July 31, 1996

Description: The importance of colloids as co-transport agents for pollutants in subsurface systems hinges on the extent to which electrostatic or other sources of repulsive colloid-collector interactions inhibit their filtration. When electrostatic interactions are favorable, for example when the colloid and groundwater media have opposite charge, colloids may be expected to travel only a few centimeters in saturated porous media. Repulsive electrostatic interactions between colloids and aquifer media with the same charge sign are postulated to significantly mobilize particles. As it happens, however, theories describing particle filtration from first principles, i.e., DLVO (Derjagin and Landau, Verwey and Overbeek) theory, dramatically underestimate filtration rates when colloid-collector interactions are electrostatically repulsive. One of the primary objectives of the project was to experimentally investigate potential reasons for the historical lack of agreement between particle filtration models based on DLVO theory and observed particle deposition rates. An important hypothesis of the study was to test the validity of the assumption of surface homogeneity, as required by these models. The approach was to focus on collector surfaces that were commonly used as model systems, e.g., glass beads and quartz sand. Laboratory-scale column filtration experiments were conducted with colloidal polystyrene latex spheres. Collector surface preparation and cleaning approaches were examined, as well as the effects of solution chemistry.
Date: December 31, 1996
Creator: Olson, T.M.
Partner: UNT Libraries Government Documents Department