293 Matching Results

Search Results

Advanced search parameters have been applied.

Final Safety Analysis Report: SNAP III Thermoelectric Generator

Description: From summary: An analysis has been performed to determine the ability of the fuel container to withstand the various thermal, mechanical and chemical forces imposed upon the generator by vehicle failures. Where theoretical analysis was impossible, and where experimental evidence was desired, capsules and generators were tested under simulated missile-failure conditions. Thus, the safety limits of SNAP III in a satellite application were defined.
Date: June 1960
Creator: Hagis, W. & Dix, George P.
Partner: UNT Libraries Government Documents Department

Environmental Management Science Program Workshop. Proceedings

Description: The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as that performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.
Date: July 1, 1998
Partner: UNT Libraries Government Documents Department

The Office of Environmental Management technical reports: A bibliography

Description: The Office of Environmental Management`s (EM) technical reports bibliography is an annual publication that contains information on scientific and technical reports sponsored by the Office of Environmental Management added to the Energy Science and Technology Database from July 1, 1995--that were published from October 1, 1996--September 30, 1997. This information is divided into the following categories: Miscellaneous, Focus Areas and Crosscutting Programs, Support Programs, Technology Integration and International Technology Exchange, are now included in the Miscellaneous category. The Office of Environmental Management within the Department of Energy (DOE) is responsible for environmental restoration, waste management, technology development and facility transition and management. Subjects include: subsurface contaminants; mixed waste characterization, treatment and disposal; radioactive tank waste remediation; plutonium; deactivation and decommissioning; robotics; characterization, monitoring, and sensor technology; and efficient separations. 880 refs.
Date: July 1998
Partner: UNT Libraries Government Documents Department

Biomedical engineering research at DOE national labs

Description: Biomedical Engineering is the application of principles of physics, chemistry, nd engineering to problems of human health. The National Laboratories of the U.S. Department of Energy have been leaders in this scientific field since 1947. This inventory of their biomedical engineering projects was compiled in January 1999.
Date: March 1, 1999
Partner: UNT Libraries Government Documents Department

Workshop report on a future information infrastructure for the physical sciences. The facts of the matter: finding, understanding, and using information about our physical world

Description: The purpose of the workshop was to obtain input from the scientific community regarding the merits of the concept of a ''Future Information Infrastructure for the Physical Sciences'' that would offer a comprehensive collection of scientific and technical information in the physical sciences as well as services that would facilitate scientific communication and increase the productivity of the scientific enterprise in the United States. The Infrastructure would impact science methods and science education as well as the scientific record as a public good. The workshop was composed of a panel of experts in science, science policy, information science, and scientific publishing. Other participants included representatives from the community of potential stakeholders in such an enterprise. The overall conclusion of the workshop was an enthusiastic endorsement of a vision of a national infrastructure that benefits not just the scientific community but the national good. It could ultimately impact not only research and development, but also education and applications to everyday life. It would be a step to integrate the whole of science to provide a basis to improve society, the economy, and the environment.
Date: July 2000
Creator: Trivelpiece, Alvin; Berry, R. Stephen; Blume, Martin; Griffiths, Jose-Marie; Holcomb, Lee; McDonald, Kirk et al.
Partner: UNT Libraries Government Documents Department

Thermophotovoltaic Cells on Zinc Diffused Polycrystalline GaSb

Description: For the first time, it has been demonstrated that thermophotovoltaic cells made of polycrystalline GaSb with small grain sizes (down to 100 x 100 {micro}m) have similar characteristics to the best Zinc diffused single crystal GaSb cells with identified device parameters. The grain boundaries in polycrystalline GaSb do not degrade TPV cell parameters, indicating that such material can be used for high-efficiency thermophotovoltaic cells.
Date: May 1, 2000
Creator: Sulima, O.V.; Bett, A.W.; Dutta, P.S.; Ehsani, H. & Gutmann, R.J.
Partner: UNT Libraries Government Documents Department

Edge Polynomial Fractal Compression Algorithm for High Quality Video Transmission. Final report

Description: In this final report, Physical Optics Corporation (POC) provides a review of its Edge Polynomial Autonomous Compression (EPAC) technology. This project was undertaken to meet the need for low bandwidth transmission of full-motion video images. In addition, this report offers a synopsis of the logical data representation study that was performed to compress still images and video. The mapping singularities and polynomial representation of 3-D surfaces were found to be ideal for very high image compression. Our efforts were then directed to extending the EPAC algorithm for the motion of singularities by tracking the 3-D coordinates of characteristic points and the development of system components. Finally, we describe the integration of the software with the hardware components. This process consists of acquiring and processing each separate camera view, combining the information from different cameras to calculate the location of an object in three dimensions, and tracking the information history and the behavior of the objects.
Date: June 1, 1999
Creator: Lin, Freddie
Partner: UNT Libraries Government Documents Department

Human Events Reference for ATHEANA (HERA) Database Description and Preliminary User's Manual

Description: The Technique for Human Error Analysis (ATHEANA) is a newly developed human reliability analysis (HRA) methodology that aims to facilitate better representation and integration of human performance into probabilistic risk assessment (PRA) modeling and quantification by analyzing risk-significant operating experience in the context of existing behavioral science models. The fundamental premise of ATHEANA is that error forcing contexts (EFCs), which refer to combinations of equipment/material conditions and performance shaping factors (PSFs), set up or create the conditions under which unsafe actions (UAs) can occur. Because ATHEANA relies heavily on the analysis of operational events that have already occurred as a mechanism for generating creative thinking about possible EFCs, a database (db) of analytical operational events, called the Human Events Reference for ATHEANA (HERA), has been developed to support the methodology. This report documents the initial development efforts for HERA.
Date: August 12, 1999
Creator: Auflick, J. L.
Partner: UNT Libraries Government Documents Department

First Lasing of the Regenerative Amplifier FEL

Description: The Regenerative Amplifier Free-Electron Laser (RAFEL) is a high-gain RF-linac FEL capable of producing high optical power from a compact design. The combination of a high-gain and small optical feedback enables the FEL to reach saturation and produce a high optical power and high extraction efficiency without risk of optical damage to the mirrors. This paper summarizes the first lasing of the Regenerative Amplifier FEL and describes recent experimental results. The highest optical energy achieved thus far at 16.3 {micro}m is 1.7 J over an 9-{micro}s macropulse, corresponding to an average power during the macropulse of 190 kW. They deduce an energy of 1.7 mJ in each 16 ps micropulse, corresponding to a peak power of 110 MW.
Date: August 17, 1998
Creator: Nguyen, D.C.; Sheffield, R.L.; Fortang, C.M.; Goldstein, J.C.; Kinross-Wright, J.M. & Ebrahim, N.A.
Partner: UNT Libraries Government Documents Department

Chemical speciation of neptunium in spent fuel. Annual report for period 15 August 1999 to 15 August 2000

Description: (B204) This project will examine the chemical speciation of neptunium in spent nuclear fuel. The R&D fields covered by the project include waste host materials and actinide chemistry. Examination of neptunium is chosen since it was identified as a radionuclide of concern by the NERI workshop. Additionally, information on the chemical form of neptunium in spent fuel is lacking. The identification of the neptunium species in spent fuel would allow a greater scientific based understanding of its long-term fate and behavior in waste forms. Research to establish the application and development of X-ray synchrotrons radiation (XSR) techniques to determine the structure of aqueous, adsorbed, and solid actinide species of importance to nuclear considerations is being conducted at Argonne. These studies extend current efforts within the Chemical Technology Division at Argonne National Laboratory to investigate actinide speciation with more conventional spectroscopic and solids characterization (e.g. SEM, TEM, and XRD) methods. Our project will utilize all these techniques for determining neptunium speciation in spent fuel. We intend to determine the chemical species and oxidation state of neptunium in spent fuel and alteration phases. Different types of spent fuel will be examined. Once characterized, the chemical behavior of the identified neptunium species will be evaluated if it is not present in the literature. Special attention will be given to the behavior of the neptunium species under typical repository near-field conditions (elevated temperature, high pH, varying Eh). This will permit a timely inclusion of project results into near-field geochemical models. Additionally, project results and methodologies have applications to neptunium in the environment, or treatment of neptunium containing waste. Another important aspect of this project is the close cooperation between a university and a national laboratory. The PI has a transuranic laboratory at MIT where students can perform spectroscopic and radiochemical experiments. Through the ANL ...
Date: September 1, 2000
Creator: Czerwinski, Ken & Reed, Don
Partner: UNT Libraries Government Documents Department

Spectroscopic Measurements of Target Preheating on OMEGA

Description: The preheating of laser-heated microballoon targets has been measured by time-resolved x-ray and extreme ultraviolet (euv) spectroscopy on the 30 kJ, 351 nm, 60-beam laser-fusion system at the University of Rochester Laboratory for Laser Energetics. Thin coatings of aluminum overcoated with magnesium served as indicators. both the sequence of the x-ray line emission and the intensity of euv radiation were used to determine a preheating peaking at {approx} 10 ns prior to onset of the main laser pulse, with a power density {approx_equal}1% of the main pulse. The measurements are supported by numerical modeling. Further information is provided by absorption spectra from the aluminum coating, backlighted by continuum from the heated surface. The exact source of the preheating energy remains unknown at present, but most likely arrives from early laser leakage through the system. The present target diagnostic is particularly useful when all beams cannot be monitored directly at all laser wavelengths.
Date: February 28, 2000
Creator: Elton, R.C.; Griem, H.R. & Iglesias, E.J.
Partner: UNT Libraries Government Documents Department

CLASSIFICATION OF THE MGR WASTE TREATMENT BUILDING VENTILATION SYSTEM

Description: The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) waste treatment building ventilation system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).
Date: August 31, 1999
Creator: Salzman, S. E.
Partner: UNT Libraries Government Documents Department

THERMAL MECHANICAL ANALYSIS OF THE DRIFT SCALE TEST VIA DISTINCT ELEMENT MODELING

Description: We have performed a thermal mechanical analysis of the Drift Scale Test (DST) currently underway at Yucca Mountain. The Yucca Mountain Site Characterization Project is investigating Yucca Mountain, Nevada, as a potential repository for high-level nuclear waste. The purpose of the DST is to acquire a more in-depth understanding of coupled Thermal-Mechanical-Hydrological-Chemical (TMHC) processes likely to exist in the rock mass surrounding a potential geologic repository at Yucca Mountain. Moreover, the DST is located in a highly fractured and densely welded ash-flow tuff, and movement of fluids in this rock is thought to occur primarily through the fractures. Our work is concerned with describing fracture deformation due to thermal mechanical effects, as normal and shear deformation of fractures can substantially change the fracture permeability, and affect the coupled TMHC behavior. We modeled the DST by defining a rectangular rock mass 50m x 50m x 100m in size. The rock mass was formed by an assemblage of discrete, elastic blocks. Excavations within the DST were closely simulated, and discrete fractures mapped from video logs of several boreholes in the DST test block were incorporated. Stress boundary conditions were used on the top and sides of the rock mass, while the bottom was considered a roller boundary. Thermal inputs were based on the test design specifications. Results of the simulations show good agreement with deformations measured in the DST using multiple-point borehole extensometers. Our analysis also indicates that the most fracture deformation occurs above the drift, and co-located with micro seismic activity and acoustic emissions observed during the DST. Results to be presented include predicted temperature and stress fields, fracture displacements, and comparison between observed and predicted displacements at specific locations in the test. Maps of fractures in the DST test block will also be presented.
Date: December 8, 2000
Creator: Blair, S.; Wagoner, J. & Dyer, K.
Partner: UNT Libraries Government Documents Department

CLASSIFICATION OF THE MGR WASTE HANDLING BUILDING ELECTRICAL SYSTEM

Description: The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) waste handling building electrical system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).
Date: August 31, 1999
Creator: Salzman, S. E.
Partner: UNT Libraries Government Documents Department

CLASSIFICATION OF THE MGR DEFENSE HIGH LEVEL WASTE DISPOSAL CONTIANER

Description: The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) defense high-level waste disposal container system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333PY ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).
Date: August 31, 1999
Creator: Ziegler, J.A.
Partner: UNT Libraries Government Documents Department

CLASSIFICATION OF THE MGR GENERAL SITE TRANSPORTATION SYSTEM

Description: The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) general site transportation system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).
Date: August 31, 1999
Creator: Ziegler, J.A.
Partner: UNT Libraries Government Documents Department

ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

Description: The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to the TSPA, which uses the ASHPLUME software described and used in this model report. Thus, ASHPLUME software inputs are ...
Date: October 25, 2004
Creator: Harrington, C.
Partner: UNT Libraries Government Documents Department

CLASSIFICATION OF THE MGR SITE WATER SYSTEM

Description: The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) site water system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).
Date: August 31, 1999
Creator: Ziegler, J. A.
Partner: UNT Libraries Government Documents Department

CLASSIFICATION OF THE MGR EMERGENCY RESPONSE SYSTEM

Description: The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) emergency response system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P7 ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).
Date: August 31, 1999
Creator: Zeigler, J.A.
Partner: UNT Libraries Government Documents Department

SURFACE COMPLEXATION OF ACTINIDES WITH IRON OXIDES: IMPLICATIONS FOR RADIONUCLIDE TRANSPORT IN NEAR-SURFACE AQUIFERS

Description: The surface complexation of actinides with iron oxides plays a key role in actinide transport and retardation in geosphere-biosphere systems. The development of accurate actinide transport models therefore requires a mechanistic understanding of surface complexation reactions (i.e. knowledge of chemical speciation at mineral/fluid interfaces). Iron oxides are particularly important actinide sorbents due to their pH dependent surface charges, relatively high surface areas and ubiquity in oxic and suboxic near-surface systems. In this paper we present results from field and laboratory investigations that elucidate the mechanisms involved in binding uranium and neptunium to iron oxide mineral substrates in near neutral groundwaters. The field study involved sampling and characterizing uranium-bearing groundwaters and solids from a saprolite aquifer overlying an unmined uranium deposit in the Virginia Piedmont. The groundwaters were analyzed by inductively coupled mass spectrometry and ion chromatography and the aquifer solids were analyzed by electron microprobe. The laboratory study involved a series of batch sorption tests in which U(VI) and Np(V) were reacted with goethite, hematite and magnetite in simulated groundwaters. The pH, ionic strength, aging time, and sorbent/sorbate ratios were varied in these experiments. The oxidation state and coordination environment of neptunium in solutions and sorbents from the batch tests were characterized by X-ray absorption spectroscopy (XAS) at the Advanced Photon Source, Argonne National Laboratory. Results from this work indicate that, in oxidizing near-surface aquifers, the dissolved concentration of uranium may be limited to less than 30 parts per billion due to uptake by iron oxide mineral coatings and the precipitation of sparingly soluble U(VI) phosphate minerals. Results from the batch adsorption tests showed that, in near neutral groundwaters, a significant fraction of the uranium and neptunium adsorbed as strongly bound surface complexes that were not removed (desorbed) when the sorbents were resuspended in dilute groundwater. The XAS results indicate ...
Date: August 25, 2005
Creator: Jerden, J. L., Jr.; Kropf, A. J. & Tsai, Y.
Partner: UNT Libraries Government Documents Department

DATA QUALIFICATION REPORT: MINERALOGY DATA FOR USE ON THE YUCCA MOUNTAIN PROJECT

Description: This DQR uses the technical assessment methods according to Attachment 2 of AP-SIII.2QY Rev. 0, ICN 3, to qualify DTN LADB831321AN98.002. The data addressed in this DQR have been cited in CRWMS M&O (2000b) to support the Site Recommendation in determining the suitability of Yucca Mountain as a repository for high level nuclear waste. CRWMS M&O (2000b) refers to mineral analyses that are unqualified. Within the context of this DQR, the term mineral analyses includes: (1) the determination of the identity of specific crystalline phases from the Yucca Mountain Site by X-ray diffraction (XRD) analysis, as well as, (2) determination of mineral abundance as a percentage of the total mineral content of samples collected from drill core, side wall core and drill cuttings. These data are used among other purposes to define the spatial distribution of minerals at the Yucca Mountain Site, for correlation with geologic properties, and may be used as input in developing both unsaturated and saturated zone flow and transport models for the YMP Total System Performance Assessment. This DQR evaluates the unqualified data within DTNs within the context of supporting such kinds of studies on the YMP. The unqualified data considered in this DQR were identified and directly used in CRWMS M&O (2000b) in which the mineral analyses are used to create three-dimensional representations of mineral distributions. The purpose of this DQR is to recommend data that can be cited as qualified for use in technical products to support the License Application. The qualified data were placed in new DTNs generated as a result of the evaluation. The appropriateness and limitations (if any) of the data with respect to intended use are addressed in this DQR. In accordance with Attachment 1 of procedure AP-3.15Q, Rev. 3, ICN 2, ''Managing Technical Product Inputs'', it has been determined ...
Date: August 1, 2002
Creator: Steinborn, T. L.
Partner: UNT Libraries Government Documents Department